

This page
intentionally left

blank

Copyright © 2007, New Age International (P) Ltd., Publishers
Published by New Age International (P) Ltd., Publishers

All rights reserved.
No part of this ebook may be reproduced in any form, by photostat, microfilm,
xerography, or any other means, or incorporated into any information retrieval
system, electronic or mechanical, without the written permission of the publisher.
All inquiries should be emailed to rights@newagepublishers.com

PUBLISHING FOR ONE WORLD

NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS
4835/24, Ansari Road, Daryaganj, New Delhi - 110002
Visit us at www.newagepublishers.com

ISBN (13) : 978-81-224-2927-5

In Loving Memory of
V Prahlad

V Indira Prahlad

V Thunder

This page
intentionally left

blank

FOREWORD

In the early days of computers, many programming languages had come into vogue but programming
in C language had very quickly taken the leading position soon after its introduction in early
Seventies. Enormous capabilities and usefulness of C language are reflected in the fact that it is
reigning supreme as the most important programming language for more than 30 years and is
taught invariably in all engineering institutions across the globe.

The large number of students who want to learn the C programming language need good text
books for their self study to supplement their classroom learning. Hence, it is no wonder that many
authors attempted to present the learning material in their respective individual styles. Sensing the
need for a “practice oriented” textbook, Prof. Ramesh Vasappanavara and his two well-qualified
sons, Anand and Gautam, have joined together to produce the new book “C and Data Structures -
By Practice”.

Prof. Ramesh and his co-authors have adopted a distinctively different style of presenting the
material, similar to the adage that swimming can be learnt only by jumping into the swimming pool
and not by getting theoretical lessons in a classroom. It avoids unnecessary repetition of what is
taught in the classroom but serves as a true supplement to traditional classroom teaching by laying
emphasis on practical examples.

Prof. Ramesh must have chosen this unique style based not only on his almost decade long
experience in teaching the subject as Professor of Computer Science and Engineering at Gayatri
Vidya Parishad College of Engineering but also on his vast practical experience in heading a
team of competent computer specialists during his earlier career in R&D and Industry. His close
contacts with almost all the leading software companies in the country as Professor of CSE and
as an enormously successful Professor-in-charge of placement at GVP College of Engineering
have given him an insider’s knowledge of what the industry expects out of a potential employee
once he/she comes out of the college. He has used this knowledge to the fullest extent in writing
this book.

(viii)

I congratulate Prof. Ramesh Vasappanavara and his coauthors on the painstaking efforts they
have taken to put their ideas together in the form of the present book. I am sure not only the
students and teachers of the subject in various Universities but also the practicing professionals
will find the book extremely useful and that it would help them to attain greater and greater
proficiency as they go along in their careers.

Dr. P. Srinivasa Rao
Formerly Professor of Structural Engineering
Dean, Industrial Consultancy &
Dean, Academic Affairs
lIT Madras, Chennai.

(ix)

PREFACE

This textbook is written for those who would like to learn C & Data Structures by themselves and
become experts on their own steam. The focus is on teaching you the methods and the theory in an
easy and understandable manner, that makes you confident. The approach taken in this text is to
teach by practice and examples. We have taught the C and Data Structures for several years to
graduate and post-graduate students and our experience shows that considerable effort is needed
both on the part of instructors and students to cover the entire requisite material. This is mainly due
to negligible or no previous knowledge of programming skills available with the student. Hence
our C coverage has been extensive and almost on talking terms with you, explaining the details, the
art of programming and so on.

In the first chapter itself, we have introduced most of the concepts of C like loops, arrays and
structures and even a small program on files. Our idea is that you should become conversant with
bare minimum skills to program, so that you can handle laboratory and other works. However, you
may proceed to Chapter 2 directly, should you so wish.

In succeeding chapters, we have introduced basics of programming, control loops and functions.
Arrays and pointers are dealt with extensively, keeping in view their importance. Concepts like
memory management and storage type and pre-processor directives have been explained with the
help of programming examples.

Chapters on structures and files have been designed to introduce you to all the concepts involved
through examples. Examples are so chosen that each example, while reinforcing your learning,
will introduce a new concept. This way we feel the practice and concepts stay with you.

We have defined the data structure and its need and linked the concepts to other linear data structures.
Each problem is explained with the help of a diagram, an algorithm, and a function code. The
programming style chosen is consistent so as to make the student adept at writing such programs.
Non-linear data structures like trees and graphs have been presented in an easy to understand
manner. Each iteration and an event has been explained with an illustration.

This text lays importance on understanding the algorithm and program. The chapter on Searching
and Sorting will answer all your queries on efficiency of sorting, programming techniques etc.

All the chapters have been provided with running examples. At the end of each chapter we have
provided:

(x)

Objective questions
Review questions
Solved examples
Assignment questions.

Note that the questions in italics have been set by University. In addition, we have included eight
question papers by JNTU completely solved, three in the text and five in resource CD. All the
programs have been tested under Linux, VC++, and Turbo C environments.

We highly appreciate and express our thanks to Mr MPJ Santosh Kumar and Mr M Srinivasa Rao
and V Poojita of Computer Science department who have helped in preparation of the manuscript
and testing of programs. The staff of Computer Science and Engineering department deserve special
thanks. We would like to express our thanks to scores of our students, both past and present, who
have rendered invaluable assistance by checking out the programs. We are highly indebted to teachers,
both past and present, for their valuable suggestions and their painstaking effort to make this subject
easier for students.

We appreciate and thank Dr B Kanta Rao, Senior Professor, Dr M N Seetaramanath, Professor,
Dept of CSE, AUCOE and Dr NB Venkateswarlu, Head of Dept. IT, GVPCOE for their
encouragement and suggestions.

We are thankful to Prof P Srinivasa Rao, Director IGIAT, Visakhapatnam and formerly Professor
of Structural Engineering and Dean, IIT Madras, Chennai, Prof P Somaraju, Secretary, Gayatri
Vidya Parishad and Prof NSVVSJ Gandhi, Principal, Gayatri Vidya Parishad College of Engineering
for their encouragement and wholehearted support.

While every effort has been made to make this publication error free, the authors would very much
feel obliged for feedback.

We thank the editors and the staff at New Age Publishers, who have brought out this high quality
textbook.

Finally, we express our thanks to V Usha Ramesh and V Thunder for their wholehearted support
for this project.

Ramesh Vasappanavara
Anand Vasappanavara
Gautam Vasappanavara

(xi)

CONTENTS

Forward (vii)
Preface (ix)

1. Around the World of C 1

1.1 Welcome to C Language 1
1.2 Arrays Implementation 4
1.3 Use of Structure to Implement Foot Balls Problem 6
1.4 Exploit C Files to Store Data About Foot Balls 8

2. Programming Basics 19
2.1 Introduction 19

2.1.1 Flow Chart 19
2.2 Algorithms 21
2.3 Program Development Steps 22
2.4 About A, B, and C Language 23
2.5 Structure of C Language 23
2.6 C Language Basics–Tokens,Variables, and Keywords 24
2.7 Data Types 25
2.8 Constants 26

2.8.1 Declaration and Assignment Values to Variables 29
2.9 Expressions 29
2.10 Arithmetic Operators 31
2.11 Relational and Logical Operators 32
2.12 Precedence and Association of Operators 34
2.13 Input and Output Statements 35

3. Control Statements 51

3.1 Conditional and Branching Statements 51
3.1.1 If Statement 51
3.1.2 If-Else Statement 52

3.2 If-Else-If Statement 53
3.3 Switch and Case Statements 55

(xii)

3.4 Control Loops 56
3.4.1 While Loop 56
3.4.2 Do-while Loop 58
3.4.3 For Loop 60
3.4.4 When to Use For or While or Do-while 62

3.5 Break and Continue 62
3.5.1 Break 62
3.5.2 Continue Statement 63

3.6 Goto Statements 64
3.7 Exit Function 65

4. Functions and Storage Classes 77
4.1 Why Use Functions? 77
4.2 Communication Between Functions 79
4.3 Call By Value 80
4.4 Call By Reference 80
4.5 Recursion 82
4.6 Storage Classes in C Language 83

4.6.1 Memory Organization and Mapping of C Language 84
4.6.2 Types of Storage Classes 85

4.7 Header Files 90
4.8 C Preprocessor 90

4.8.1 Macro Expansion 91
4.8.2 Macro Definition with Arguments 91

4.8.3 File Inclusion 92
4.8.4 Conditional Inclusion 93
4.8.5 Conditional Compilation #Ifdef and #Ifndef Statements 94
4.8.6 #undef 94
4.8.7 #error Macros 95

5. Arrays & Strings 103
5.1 How Arrays Are Stored in the Memory 104
5.2 Array Initialization 105
5.3 Multi Dimensional Arrays 106
5.4 Character Array-String Handling in C Language 110
5.5 String.h-Library Function 111

(xiii)

6. Pointers 125
6.1 What, Why and How of Pointers 125
6.2 Declaration & Usage 125
6.3 Call By Value & Call By Reference 127
6.4 Dynamic Memory and Malloc() & Calloc() 128
6.5 Pointers and Arrays 129
6.6 Pointers and Multi Dimensional Arrays 131

6.6.1 Two Dimensional Arrays & Printers 131
6.6.2 Three Dimensional Arrays & Printers 134
6.6.3 Array of Pointers 134

6.7 Pointers to Void 135
6.8 Pointer to Pointers 136

7. Structures & Unions 151
7.1 Let Us Declare & Define a Structure 151
7.2 Initialization of Values to Structure 152
7.3 First Problem Using Structure 153
7.4 Input & Output Using Structures 154
7.5 Passing of Structure Elements as Arguments to a Function 156
7.6 Pass a Structure as an Argument to a Function 157
7.7 Pass a Pointer to a Structure as an Argument to a Function 160
7.8 Create a Pointer to a Structure 162
7.9 Passing Array of Structures to a Function 165
7.10 Sorting an Array of Structures 167
7.11 Unions 170

8. Files 179
8.1 Introduction to Files 179
8.2 File Types 180
8.3 Input-output (IO) Functions 180

8.3.1 Errors While Opening Files 183
8.3.2 Checking for End of File 183
8.3.3 More Streaming Functions 189
8.3.4 Stream Functions for Writing Structures on to File 192

8.4 Command Line Arguments 199

(xiv)

9. Linear Data Structures 213

9.1 Introduction to Data Structures 213
9.2 Single Linked Lists 214
9.3 Linked Lists Functions 215
9.4 Reverse List 225
9.5 Double Linked Lists 229

10. Stacks 243

10.1 Introduction 243
10.2 Stack Operations 243
10.3 Array Implementation of Stack Data Structure 244
10.4 Stack Implementation Using Linked Lists 250
10.5 Applications of Stack 253

10.5.1 Infix to Postfix Notation 253
10.5.2 Evaluation of Postfix Expression 257

11. Queues 275

11.1 Introduction to Queues 275
11.2 Array Representation of Queue 277

11.2.1 Algorithm for Addition of an Element to the Queue 277
11.2.2 Algorithm for Deletion of an Element to the Queue 277

11.3 Dynamic Representation of Queues Using Linked Lists 281
11.4 Circular Queue-Array Representation 286

12. Non Linear Data Structures: Trees 299
12.1 Trees Why–What–How 299
12.2 Terminology and Definitions of Tree 302
12.3 Binary Tree 303
12.4 Binary Search Tree 305

12.4.1 Creating Binary Tree 305
12.4.2 Insertion in a BST 305
12.4.3 Deletion in a BST 306
12.4.4 Searching a Binary Search Tree 307

12.5 Tree Traversals 315
12.6 Non Recursive Algorithms for BST 324

(xv)

13. Graphs 345
13.1 Introduction 345
13.2 Graph Representation 348

13.2.1 Adjacency Matrix Representation 348
13.2.2 Adjacency List Representation 350

13.3 Graph Traversals 352
13.3.1 Depth First Search Algorithm 353
13.3.2 Breadth First Search Algorithm 358

13.4 Minimal Spanning Trees (MST) 364
13.4.1 MST Problem 364
13.4.2 Example of Spanning Tree Problem 365
13.4.3 Kruskal’s Algorithm for MST 366
13.4.4 Prims Algorithm for MST 370

14. Searching and Sorting 375
14.1 Introduction 375
14.2 Big Oh-O Notation 376
14.3 Efficiency Considerations in Sorting Algorithms 377
14.4 Searching 377

14.4.1 Linear Search 378
14.4.2 Analysis of Linear Search 378

14.5 Binary Search 380
14.5.1 Binary Search Algorithm 380

14.6 Bubble Sort 384
14.7 Selection Sort 387
14.8 Insertion Sort 390
14.9 Quick Sort 395
14.10 Heap Sort 400

15. JNTU Question Papers and Solutions 419

This page
intentionally left

blank

LIST OF EXAMPLES & SOLVED
PROBLEMS

There are numerous examples throughout the textbook to enhance understanding and improve
the art and science of writing programs.

Chapter 1
1 Example 1.1 area.c Program to calculate surface area of a ball 1
2 Example 1.2 arrayl.c 5
3 Example 1.3 areadiff.c 6
4 Example 1.4 fptr.c 8
5 surfarea.c 12
6 void Multiply(int a, int b) 13
7 findmax.c 13
8 squar.c 14
9 studstruct. c 15

Chapter 2
10 Example 2.1 : max.c C code for finding maximum of 3 numbers 21
12 Example 2.2 roots.c A program to compute roots of a quadratic equation 30
13 Example 2.3 bitwise.c The working of bitwise operators 34
14 Example 2.4 inout. c . Usage of input and output statements 36
15 Example 2.5 getchar.c Usage of getchar and putchar 38
16 max. c maximum of 2 given numbers using conditional operators 42
17 check.c Checks whether its rightangled or not 42
18 star. c Program to print the following figure 43
19 leap.c Program to check if leap year or not......... 44
20 vowels.c Program to check if all characters are vowels or not 44
21 even.c Program to check if number is even or not 45
22 format.c Program to print a figure 46

(xviii)

23 gcf.c . Program to find GCF of a number 47
24 prime.c . Given number is prime or not 48
25 number.c Find number of digits in a number 48

Chapter 3
26 Example 3.0 : checkhigh.c. Find higher of two temperatures 52
27 Example 3.1 tempcontrol.c 53
28 Example 3.2 switch.c To show the usage of switch and case 55
29 Example 3.3 CheckLimit.c 57
30 Example 3.4 sumwhile.c 57
31 Example 3.5 sumdowhile.c 59
32 Example 3.6 sumfor.c 60
33 Example 3.7 nest.c 61
34 sum.c Find out the sum of the digits of a number 67
35 lupper.c Convert lower case to upper case and vice versa 67
36 reverse.c. Reverse the digits in a number. 68
37 format1.c To print a given format 69
38 fact.c. To find a factorial of a number using iteration 70
39 fibsrc.c To generate Fibonacci number 71
40 strupp.c To convert a string from lower case to upper case 71
41 series1.c To generate the series 72
42 series2.c To generate the series 73
43 pyramid.c To generate the pyramid figure 73
44 numpid.c To generate the figure 74

Chapter 4
45 Example 4.1 swap.c & Example 4.2 comm .. c 77
46 Example 4.3. arraycall.c Passing array by reference 81
47 Example 4.4 factrecur.c Factorial by recursion 82
48 Example 4.5 stackstatic.c Stack and static memory usage 86
49 Example 4.6 reg.c 87
50 Example 4.7 extern.c Usage of external variable usage 88
51 Example 4.8 externfile.c Usage of external program stored in another file 89
52 Example 4.9 macro I.e Preprocessor macro demonstration program 91
53 Example 4.10 macro2.c. Usage of preprocessor directives 91
54 Example 4.11elseifmacro.c 93
55 Example 4.12 undef.c 94
56 lcm.c. To find LCM of two integers 96

(xix)

57 bincode.c To find the binary code of a number... 97
58 palen.c To check whether the given number is palindrome or not 97
59 exchg.c To exchange two variables without using a third variable 98
60 armsg.c To check if the given number is an Armstrong number 99
61 fibrecur.c To generate Fibonacci series using recursion 100

Chapter 5
62 Example 5.1 array.c To display the array elements along with their address 104
63 Example 5.2 revstg.c To reverse the string 105
64 Example 5.3 transpose.c .To find the transpose of a matrix 107
65 Example 5.4 matmul.c . A program to find the product of two matrices 108
66 Example 5.5 concat.c A program to concatenate two strings 111
67 Example 5.6 stg.c . Main program to test the string handling functions 111
68 sum.c. To find the sum of elements of an array with recursion 116
69 extract.c. To extract starting from nth position upto mth position in a string 117
70 stglen.c Write a program to find the length of a string 118
71 matdet.c. Write a C program to find the determinant of a matrix 118
72 singular.c. To find the singular of a matrix 123

Chapter 6
73 Example:6.1 ptr1.c .Pointer concepts 126
74 Example:6.2 ptr2.c.Call by value and call by reference 127
75 Example: 6.3 samp7.c To pass an array to a function that sorts 130
76 Example 6.4 ptr4.c To multiply two matrices 132
77 Example 6.5 ptr5.c Program to demonstrate use of array of pointers 134
78 Example 6.6 Program to demonstrate use of void pointers 135
79 Example 6.7 voidpointer.c Program to demonstrate use of void pointers 135
80 Example 6.8 ptr7.c To read mxn matrix using pointer to pointer 136
81 samp1.c Write a program using pointers to find maximum of an array 139
82 samp2.c Use of indirection operator “*” to access the Value 140
83 samp3.c To read in an array of integers and print in reverse order 142
84 samp4.c To find number of words, blank spaces, special characters 143

digits and vowels of a given text using pointers.
85 samp5.c. Use of pointers in arithmetic operations 144
86 samp6. To compute the sum of array elements using pointers 145
87 samp8.c To exchange the values stored in the two locations in the memory 146
88 samp9.c Using pointers to determine the length of a character string 146
89 addsum .Uses a pointer as a function argument 147
90 samp II.c To sort names in alphabetical order using a pointer 148

(xx)

Chapter 7
91 Example 7.1 struct1.c To initialize data and calculate and print 153

student wise totals
92 Example 7.2 struct2.c To read data of specified number data from 154

keyboard and record them in to structure .
93 Example 7.3 struct3.c Passing of members of structure as arguments 156

to a function.
94 Example 7.4 struct4.c Pass a structure as an argument to a function 157
95 Example 7.5struct5.c. Pass a pointer to a structure as an argument 160

to a function.
96 Example 7.6 struct6.c To create a pointer to structure 162
97 Example 7.7 struct7.c. Passing array of structures to a function 165
98 Example 7.8 struct8.c. Sorting an array of structures 167
99 Example 7.9 union1.c To demonstrate the use of unions 171

100 indirection.c To read data into a structure using. operator 174
and print the data using indirection operator

101 taxstruct.c. To compute Income tax 175

Chapter 8
102 Example 8.1 fileop.c Program to demonstrate various file operations 183
103 Example 8.2 fconcat.c Program to concat two files 184
104 Example 8.3 fileop1.c Demonstrates advanced file operations 186
105 Example 8.4 fuppercase.c Converts input to uppercase and stores in file 190
106 Example 8.5 char2file.c Copies character array to file 191
107 Example 8.6 intar2file.c Read and write integers 191
108 Example 8.7 struct2file.c Read and write structured data 193
109 Example 8.8 sortfile.c Sorting of a file 195
110 Example 8.9 cmdline.c Demonstrates command line arguments 200
111 fstring.c Lists the words in a file and gives the count. 202
112 fvowels.c Counts the number of vowels in a file 203
113 fcopy.c Copies file from source to destination 204
114 intarrasfile.c Copies 2D array onto a file 205
115 stgfile.c Copy array of characters onto a file 206
116 fileupdate.c Program to update inventory record 207

Chapter 9
117 Example 9.1 listl.c Demonstrates operations on linked list 219
118 Example 9.2 reverselist.c Reverse a linked list.. 225

(xxi)

119 Example 9.3 dllist.c 230
120 concatlist.c concatenate two linked lists 234
121 llsort.c Program to sort a linked list 236
122 llmerge.c Program to merge two linked lists 239

Chapter 10
123 Example 10.1 stackarr.c Implementation of stacks using arrays 246
124 Example 10.2 stacklist.c Implementation of stack using linked list 250
125 Example 10.3 in2post.c Infix to postfix conversion 255
126 Example 10.4 eval.c Evaluates postfix expression 259
127 numconver.c Convert number from one base to another using stack 266
128 in2prefix.c Infefix to prefix conversion 270

Chapter 11
129 Example 11.1 QueArray.c Array implementation of queue 278
130 Example 11.2 quelinkl.c Queue implementation using linked lists 282
131 Example 11.3 cirque.c Circular queue implementation 288
132 cquelist.c Circular queue using linked list 292
133 clistarr.c Circular linked list using an array 296

Chapter 12
134 Example 12.1 bintree.c Operations on binary tree 308
135 Example 12.2 bstrecur.c Tree traversal using recursion 319
136 Example 12.3 itertraves.c Tree traversal using iteration 326
137 nodedepth.c Height of binary tree using recursion 331
138 treeheight.c Height of a full binary tree 334
139 treesort.c Sorting an array using BST properties 336
140 swaptree.c Swap left and right sub tree 339

Chapter 13
141 Example 13.1 dfs.c depth first search 356
142 Example 13.2 bfs.c breadth first search 361
143 Example 13.3 gkruska1.c MST using Kruskal’s algorithm 367

Chapter 14
144 Example 14.1 linsrch.c Code for linear search 379
145 Example 14.2 binsrch.c Code for binary search 381

(xxii)

146 Example 14.3 binsrchrec Code for iterative binary search 382
147 Example 14.6.3 bubble.c Code for bubble sort 385
148 Example 14.7.3 selection.c Code for selection sort 389
149 Example 14.8.4insort.c Code for insertion sort 393
150 Example 14.9.3qsort.c Code for quick sort 397
151 Example 14.8 heap.c Code for heap sort 410
152 charheapsort.c Sort array of strings using heap sort 413
153 charbinsearch.c Search for a name in array using binary search 415

AROUND THE WORLD OF C

CHAPTER

1
 1.1 WELCOME TO C LANGUAGE

We want to make you reasonably comfortable with C language. Get ready for an exciting tour. The
problem we would consider to introduce C language is that , we have a Foot Ball spherical in shape. We
would like to compute surface area of the ball, given it’s radius, given by formula 4 * PI * r * r The C
code for the above problem is given below:

//Example 1.1 area.c Program to calculate surface area of a ball
include <stdio.h> // library file for standard I/O Ex. printf & scanf
define PI 3.141519 // PI is a symbol for constant

/* Declare function prototype that will compute surface area
given radius of float (real number) data type and returns area
again of float data type*/

float FindArea(float radius);

void main()
{
 // You will need float (real numbers) data types for holding radius and area
 float radius, area;
 /* Obtain radius from the user. User can enter 0 to stop the
 process of computation of surface area.*/
 printf(“ Enter radius of the ball. To stop enter 0 for the radius \n”);
 printf(“\n Radius = ? “);
 scanf(“%f”, &radius); // What user enters for the radius is entered by computer at
 //address of radius denoted by & operator

2 C & Data Structures by Practice

/* We would like to compute surface areas of the various ball.
So user enters various radii. User can stop by entering 0
for the radius. We will use while statement.*/

 while (radius != 0) //i.e. till user does not enter 0
 {
 if (radius < 0)
 area = 0; // if radius is negative area =0
 else
 area = FindArea(radius); // calling out function. We have supplied radius
 // We store the result returned by FindArea() at area

 // print out put
 printf(“Area = %f\n”, area); // %f is used to print float data type area
 /* what is in quotes appears as it is in the output. \n means leave a line after print
 We are inside while statement. We have just completed printing of area.
 What should we do next? Ask the user for next problem i.e. next radius. Ask it.*/
 printf(“Enter radius of the ball. To stop enter 0 for the radius \n”);
 printf(“\n Radius = ? “);
 scanf(“%f”, &radius);
 }// end of while
}// end of main

// function definition. Here we will tell what FindArea function does

float FindArea (float radius)
{ float answer; // we will store the area
 answer = 4* PI * radius * radius;
 return answer;
} // end of function definition
 /* OR

We could simply write in one line above definitions as

float FindArea (float radius) { return 4 *PI*radius*radius;} */
/*
OUTPUT:
 Enter radius of the ball. To stop enter 0 for the radius
 Radius = ? 2.0

3Around the World of C

 Area = 50.240002
 Enter radius of the ball. To stop enter 0 for the radius
 Radius = ? 1.0
 Area = 12.560000
 Enter radius of the ball. To stop enter 0 for the radius
 Radius = ? 3.0
 Area = 113.040001
 Enter radius of the ball. To stop enter 0 for the radius
 Radius = ? 0
*/

Note : // or /* …. */ are comments. They are there to improve the understanding of the
program. They are not compiled.

include < > statements are preprocessor directives. They tell the C compiler to include the standard
definitions that are included in header files supplied by the standard C Library.

Function Prototype like float FindArea(float radius); tells the compiler that function definition is after
main() but its usage will be in the main(). It is like advance information to the compiler to accept usage
prior to definition.

Global Declarations and Definitions. All statements included before main() function. All include
sections, define statements, function prototype declarations, and structure definitions are global
declarations. Hence they are available to all functions also.

Structure of a C Program. Include section, function prototype declarations, structures and other
global declarations and definitions if any, main function, and function definitions.

Simple IO Statements printf() and scanf() statements. The general syntax of these IO statements are
printf(“control format”, data); and scanf(“control format”, address of data items);

CREATION COMPILATION AND RUNNING YOUR PROGRAM

Use any text editor like notepad, vi editor etc and enter your code and save it as ball1.c.

Compile it using #gcc ball.c Output using # a.out for Linux based system
 Run —— Compile —— Execute for Turbo C

4 C & Data Structures by Practice

Compile and Run your program. Now we are ready for dabbling our foot ball using arrays!

Programming and executing in Linux environment:

1. Switch on the computer.
2. Select the Red hat Linux environment.
3. Right click on the desk top. Select ‘New Terminal’.
4. After getting the $ symbol, type ‘vi filename.c’ and press Enter.
5. Press Esc+I to enter into Insert mode and then type your program there.

The other modes are Append and Command modes.
6. After completion of entering program, press (Esc + Shift + :).

This is to save your program in the editor.
7. Then the cursor moves to the end of the page.

Type ‘wq’ and press Enter.
(wq=write and quit)

8. On $ prompt type, cc filename.c and press Enter.
9. If there are any errors, go back to your program and correct them.

Save and Compile the program again after corrections.
10. If there are no errors, run the program by typing

./a.out and press Enter.
11. To come out of the terminal, at the dollar prompt, type ‘exit’ and press Enter.

 1.2 ARRAYS IMPLEMENTATION

In the C program in section 1.1, we have taken in the radius and immediately declared the result and
continued the process till user entered 0 to exit. Instead, it would be nice, if we had taken all the radii
of several foot balls together and stored in memory location, compute corresponding surface areas of
these foot balls and stored them as well and declared the results. Array comes to our rescue here. We
will define array named radius with maximum of 10 elements of type float as;

 float radius[10];

2 .0 5 .0 6 .0 7 .0 8 .0 9 .0 1 2 .0 1 2 .0

radius 0 1 2 3 4 5 6 7 8 9

5Around the World of C

In C language, it is customary to number the cells of the array starting with 0. Accordingly radius[0]
holds a value 2.0 and radius[9] holds value of 12.0. With this knowledge, let us attempt array
implementation of Foot Balls.

Example 1.2 array1.c

//Arrays implementation to determine surface area of Foot balls

include <stdio.h> // library file on standard i/o
define PI 3.14159 // PI is a symbol for constant
// declare function prototypes
float FindArea(float radius);
void main()
{ int n, i =0; // i we will use as array index, n for keeping count
 float radius[50]; // Array of radius, numbering max of 50
 float area[50]; // Array of area, numbering max of 50
 printf(“ To stop enter 0 for the radius \n”);
 printf(“\n Radius = ? “);
 scanf(“%f”, &radius[i]); // we are storing at address of radius[i]
 while (radius[i] != 0)
 { if (radius[i] < 0)

 area[i] = 0;
 else
 area [i]= FindArea(radius [i]);// store the result in array area
 // get the next set of data. we have to increment i prior to getting new radius
 // else old data will be over written and hence lost
 ++i;
 printf(“To stop enter 0 for the radius \n”);
 printf(“\n Radius = ? “);
 scanf(“%f”, &radius[i]);

 }// end of while
 n = — i; // This is because you have increased the count

 // for i for radius = 0 case also. We will use n in for loop.
 // display array elements
 printf (“\n Surface area of balls\n”);
 // You have n balls (i.e 0 to n-1 as per C convention). Therefore print i <=n
 for (i=0; i<= n; i++)

 printf(“radius = %f area = %f \n”, radius[i], area[i]);
}// end of main
// function definition
float FindArea(float radius) {return (4*PI * radius * radius);}
/*
 To stop enter 0 for the radius
 Radius = ? 2.0

6 C & Data Structures by Practice

 To stop enter 0 for the radius
 Radius = ? 3.0

 To stop enter 0 for the radius
 Radius = ? 4.0
 To stop enter 0 for the radius
 Radius = ? 0.0
 Surface area of balls
 radius = 2.000000 area = 50.265442
 radius = 3.000000 area = 113.097237
 radius = 4.000000 area = 201.061768

 1.3 USE OF STRUCTURE TO IMPLEMENT FOOT BALLS PROBLEM
While arrays store same type of data in contiguous locations, structure can be used to store different
types of data, bundled together as an instance of structure. For example you can store details of Sports
Ball, like color, radius, and surface area etc in a structure. We can define structure in C language

 struct SportsBall
 {
 char color[20];
 float radius;
 float area;
 };
typedef struct SportsBall stsb; Structure Sports Ball holds Red, Blue,
stsb ball[10]; //max of 10 Foot balls and Yellow balls. Radii are 2, 3, and 4

We have used typedef statement so that we can use stsb in lieu of lengthy struct SportsBall.User can
enter color of the ball, radius of the ball. Program computes the surface area of the ball and stores it in
the structure as ball[i]. Later you can refer to items inside the structure using

 ball[i].color, ball[i].radius, ball[i].area

//Example 1.3 areadiff.c
//Use structures to find surface area of different colored balls
include <stdio.h> // library file on standard i/o
define PI 3.14159 // PI is a symbol for constant
// declare function prototypes
float FindArea(float radius);
// declare a structure

4

3

 2

7Around the World of C

struct FootBall
 {
 char color[20];
 float radius;
 float area;
};
typedef struct FootBall stsb;
stsb ball[10]; //maximum of 10 Foot balls
void main()
{
 int n, i=0; // i we will use as structure index, n for keeping count

 printf(“To stop enter STOP for the color field \n”);
 printf(“\n Enter color of the ball :”);
 scanf(“%s”, ball[i].color);
 /* if any one of sub expression is true enter the loop. For example if first letter is not
 S enter while loop. Similarly enter if 2, 3, 4 letters are not T, O, P*/
 while (ball[i].color[0] != ‘S’|| ball[i].color[1] != ‘T’ || ball[i].color[2] != ‘O’|| ball[i].color[3] != ‘P’)
 {

printf(“\n Radius = ? “);
scanf(“%f”, &ball[i].radius);
if (ball[i].radius < 0)
 ball[i].area = 0;
else
 ball[i].area = FindArea(ball[i].radius);
++ i;
printf(“To stop enter STOP for the color field \n”); // get next set of data
printf(“\n Enter color of the ball :”);
scanf(“%s”, ball[i].color);

 }// end of while
 n = — i; // this is because you have increased the count for i for color =STOP case also.
 // display structure elements

printf(“\n Surface area of Foot balls\n”);
 for(i=0;i<= n; i++)

printf(“color %s radius = %f area = %f \n”,ball[i].color, ball[i].radius,
 ball[i].area);

}// end of main
// function definition
float FindArea (float radius)
{float answer;
 answer = 4*PI * radius * radius;
 return answer;
 } // end of function definition
/*output

8 C & Data Structures by Practice

To stop enter STOP for the color field
 Enter color of the ball :RED
 Radius = ? 2.0
To stop enter STOP for the color field
 Enter color of the ball :BLUE
 Radius = ? 3.0
To stop enter STOP for the color field
 Enter color of the ball :STOP
 Surface area of Foot balls
color RED radius = 2.000000 area = 50.265442
color BLUE radius = 3.000000 area = 113.097237*//*

 1.4 EXPLOIT C FILES TO STORE DATA ABOUT FOOT BALLS
In daily life, you would have used files. For example, your certificates and marks lists are probably
stored in a file. C language also provides files to store your data. File contain papers, here we will call
them records. Each record in the file holds details of RED ball viz color, radius, surface area. We will
now write a program to read the data and store the records in a structure and later record the details in a
file called SportsBalls. Our program also opens the file, reads the details and displays on the screen.

Example 1.4 fptr.c Program to demonstrate the use of file to store details of different Foot balls.
/*We will make use structure to store the details like, color, sport, and radius, and area
 write to file data stored in structure & finally read details from file and display . write to file using
pointer fptr in fprintf statement*/
//Program to store details of different Sports Balls using files
include <stdio.h> // library file on standard i/o
include <stdlib.h> // to use standard C file definitions
define PI 3.14159 // PI is a symbol for constant
// declare function prototypes
float FindArea(float radius);
// declare a structure
struct SportsBall
 { char color[20]; // array
 char sport[20]; //array
 float radius;
 float area;
 };
typedef struct SportsBall stsb;
stsb ball[10]; //maximum of 10 sports balls
void main()
{ int i=0;
 char stg[20]; // This is an array. we will use it to store what we read from file.
 FILE *fptr; // fptr points to object FILE. You can access definitions contained therein.
 fptr=fopen(“SportsBalls”,”w”); // open SportsBalls for writing data

9Around the World of C

 if (fptr==NULL)
 { printf(“File could not be opened\n”);

exit(1);
 }
 printf(“ To stop enter END for the color field \n”);
 printf(“\n Enter color of the ball :”);
 scanf(“%s”, ball[i].color);

 while (ball[i].color[0] != ‘E’|| ball[i].color[1] != ‘N’
 || ball[i].color[2] != ‘D’)
 { fprintf(fptr,” %s”, ball[i].color);
 // get details of sport, radius, and compute area
 printf(“\n Sport = ? “);
 scanf(“%s”, ball[i].sport);
 fprintf(fptr,”%s”, ball[i].sport);
 printf(“\n RADIUS = ? “);
 scanf(“%f”, &ball[i].radius);
 fprintf(fptr,”%f”, ball[i].radius);
 ball[i].area=FindArea(ball[i].radius);
 fprintf(fptr,”:%f”, ball[i].area);
 i++;
 //get the next set of data
 printf(“ To stop enter END for the color field \n”); // get next set of data
 printf(“\n Enter color of the ball :”);
 scanf(“%s”, ball[i].color);
 }// end of while
 //close file SportsBalls
 fclose(fptr);
 // now open the file in read mode
 fptr=fopen(“SportsBalls”,”r”); // open sportsballs for reading data
if (fptr==NULL)
 { printf(“File could not be opened\n”);

 exit(1); // exit to operating system
 }
printf(“ Details of FootBalls fetched from file are...\n”);
 printf(“color : sport : radius : area \n”);
 // do while end of file not reached
 while(!feof(fptr))
 { //fscanf reads entire line as an array. store it in array stg
 fscanf(fptr,”%s”, stg); //
 //print stg using printf command
 printf(“%s\n”, stg);
 }

10 C & Data Structures by Practice

fclose(fptr);
}// end of main

// function definition
float FindArea (float radius) {return (4*PI * radius * radius);}
/*OUTPUT:
To stop enter END for the color field
 Enter color of the ball: RED
 Sport = ? CRICKET
 RADIUS = ? 2.0

 To stop enter END for the color field
 Enter color of the ball: BLUE
 Sport = ? TENNIS
 RADIUS = ? 2.5
To stop enter END for the color field
 Enter color of the ball: END

 Details of SportsBalls fetched from file are...
color : sport : radius : area
RED: CRICKET: 2.000000:50.265442
BLUE: TENNIS: 2.500000:78.539749*/

 We have finished telling you what we wanted to tell you before we commence in depth. It is like you
will learn at home with mother most of the things they formally teach you at lower KG in school. Look
back, you will notice, you have already learnt about functions, passing arguments, arrays, structures,
and files. Make sure you enter the code yourself by hand and execute them if you have access to computer
or write the code on paper if you do not have one. Both methods of learning are equally effective. In the
next chapter we will learn about problem solving techniques like flow charts and algorithms.

OBJECTIVE QUESTIONS

1. Standard library file ——————— is included to use printf & scanf functions

2. For using clrscr() function, the standard library file to be included
a) stdio.h b) conio.h d) math.h d) stdstream.h

3. To go to new line the escape sequence required is
a) ‘\a’ b) ’\new’ c) ’\t’ d) ‘\n’

4. For using getch() function, the standard library file to be included
a) stdio.h b) math.h c) conio.h d) stdstream.h

11Around the World of C

5. Conversion specifier for integer in scanf statement are
a) %d b) %f c) %c d) %s

6. Conversion specifier for float in scanf statement are
a) %d b) %f c) %c d) %s

7. Conversion specifier for string in scanf statement are
a) %d b) %f c) %c d) %s

8 Function prototype statement will have a semicolon True/False

9 Function definition statement will have a semicolon True/False

10 Global Declarations and Definitions are available to all functions True/False

11 Structure declaration and definition and are placed above void main(). Which one of the following
statements are NOT true.
a) its required by all functions
b) Its global declaration
c) Space available
d) They are global declaration and available to all

12 Type defining a structure would allow shorter names in lieu of key word struct and structure name
True/False.

13 #define symbol value. Value can be changed in side function True/False

14 Include sections are called pre processor directive True/False

15 FILE object contains standard definition for accessing file functions True/False

REVIEW QUESTIONS

1 What are global declarations?

2 What does <stdio.h> contain?

3 Why function prototypes are declared before main() function.

 4 Declare an array of integers X to hold 25 values. Draw pictorially and put a value of 25 in X[10].

5 Declare a structure called BankCustomer. Show the fields name, acctno, balance. Type define
structure as customer and creates an array of customers called cust to hold 25 customers of type
BankCustomer.

12 C & Data Structures by Practice

SOLVED PROBLEMS

1. Write and test a function that takes two arguments radius and height and returns surface
area of the cylinder.

//surarea.c
// We will pass two arguments radius and height
include <stdio.h> // library file on standard i/o
define PI 3.14159 // PI is a symbol for constant
// declare function prototypes
float FindArea(float radius, float height);

void main()
{ float radius, height;
 float area;
 printf(“ To stop enter 0 for the radius \n”);
 printf(“\n Radius = “);
 scanf(“%f”, &radius);
 printf(“\n Height = ? “);
 scanf(“%f”, &height);
 while (radius != 0)
 { if (radius < 0)
 area = 0;
 else
 area = FindArea(radius, height);
 // print out put
 printf(“Area of cylinder = %f\n”, area);
 printf(“ To stop enter 0 for the radius \n”);
 printf(“\n Radius = “);
 scanf(“%f”, &radius);
 printf(“\n Height = “);
 scanf(“%f”, &height);
 }
 }// end of main
// function definition
float FindArea(float radius, float height) {return (2*PI * radius * height);}
/*Output:
 To stop enter 0 for the radius
 Radius = 4
 Height = ? 4
 Area of cylinder = 100.530884
 To stop enter 0 for the radius
 Radius = 3
 Height = 6

13Around the World of C

Area of cylinder = 113.097237
To stop enter 0 for the radius
 Radius = 0
 Height = 0

2 Write and test a function that takes two arguments a and b and prints multiplication table.
 // function definition
 void Multiply(int a, int b)
 { // a implies a times table and b implies up to b
 // Ex a=5, b=20 means up to 5x20
 int i;
 for (i=1;i<=b;i++)
 {
 printf(“\n %dX%d= %d\n”, a, i, a*i);
 }
 }//end of function main

/*Output:
 Enter values for <a,b>5 5
 5X1= 5
 5X2= 10
 5X3= 15
 5X4= 20
 5X5= 25

3. Write a program to compute larger of two float numbers. Function FindMax to turn larger
of two float type arguments.

//findmax.c
include <stdio.h> // library file on standard i/o
// declare function prototypes
int FindMax(int a, int b);
void main()
{
 int a, b, ans;
 printf(“\n Enter values for <a,b>”);
 scanf(“%d%d”, &a, &b);
 ans = FindMax(a,b); // pass parameters
 printf(“\n maximum of two given numbers %d and %d = %d\n”, a, b, ans);
}
// function definition
int FindMax(int a, int b)
 {int ans;
 ans = (a>b)?a:b;
 return ans;
 }

14 C & Data Structures by Practice

/*Output:
 Enter values for <a,b>23 45
 maximum of two given numbers 23 and 45 = 45*/

4 Write and test a program that uses three float type arrays : num[10], square[10]Squareroot[10].
Get the num from the user and write functions to compute square and squareroot and store in
respective arrays. You can use n^0.5 for square root.
//squar.c
#include <stdio.h> // library file on standard i/o
#include<math.h>
// declare function prototypes
float FindSquare(float num);
double Squareroot(float num);

void main()
{ int n, i =0; // i we will use as array index, n for keeping count
 float num[10]; // Array of numbers, numbering max of 10
 float square[10]; // Array of square, numbering max of 10
 double squareroot[10]; // Array of squareroot, numbering max of 10

 printf(“ To stop enter 0 for the number \n”);
 printf(“\n Number = “);
 scanf(“%f”, &num[i]);
 while (num[i] != 0)
 { if (num[i] < 0)
 { square[i] = 0;
 squareroot[i]=0;
 }
 else
 { square[i] = FindSquare(num[i]);// store the result in square area
 squareroot[i] = Squareroot(num[i]); // store the result in squareroot
 }
 // get the next set of data. we have to increment i prior to getting new radius
 // else old data will be over written and hence lost
 ++i;
 printf(“ To stop enter 0 for the number \n”);
 printf(“\n Number = “);
 scanf(“%f”, &num[i]);
 }// end of while
 n = — i; // This is because you have increased the count
 // for i for radius = 0 case also. We will use n in for loop.
 // display array elements
 printf (“\n Square and square root of a given number\n”);

15Around the World of C

 // You have n balls (i.e. 0 to n-1 as per C convention). Therefore print i <=n
 for (i=0; i<= n; i++)
 printf(“number = %f : square = %f : squareroot = %lf \n”, num[i], square[i], squareroot[i]);
}// end of main

// function definition
float FindSquare(float num)
{ return num*num;
}
double Squareroot(float num)
 { return pow(num, 0.5);
 }
/*Output:
 To stop enter 0 for the number
 Number = 4
 To stop enter 0 for the number
 Number = 5
 To stop enter 0 for the number
 Number = 6
 To stop enter 0 for the number
 Number = 0

 Square and square root of a given number
 number = 4.000000 : square = 16.000000 : squareroot = 2.000000
 number = 5.000000 : square = 25.000000 : squareroot = 2.236068
 number = 6.000000 : square = 36.000000 : squareroot = 2.449490*/

5 Define a structure called Student. Field in the structure is name[20], int age, char class[20],
float marks1, float marks2, and float total. Write and test the program to get the data, compute
total through a function call and print all the details for 5 student records.
//studstruct.c
#include<stdio.h>
#include<stdlib.h>
struct student
{ char name[20];
 int age;
 float marks1;
 float marks2;
 float total;

};
typedef struct student stud;
stud st[5]; //create 5 instances of students

16 C & Data Structures by Practice

void printdata();
void compavg();
void main()
{ int i;

for(i=0;i<5;i++)
{ printf(“\nenter name :”);

 scanf(“%s”, st[i].name);

 printf(“\nenter age :”);
 scanf(“%d”, &st[i].age);

 printf(“enter marks1 and marks2 :”);
 scanf(“%f%f”, &st[i].marks1, &st[i].marks2);

 }
 compavg();
 printdata();
}
void compavg()
{ int i;
 for(i=0;i<5;i++)

 st[i].total=(st[i].marks1+st[i].marks2);
}
void printdata()
{ int i;
 printf(“\n printing details of students.......\n”);
 for(i=0;i<5;i++)
 { printf(“name: %s\nage:=%d\n”, st[i].name, st[i].age);
 printf(“marks1=%f\tmarks2=%f\total=%f\n\n”, st[i].marks1, st[i].marks2,
 st[i].total);
 }
}//end of main

/*Output:
enter name:ravi
enter age:23
enter marks1 and marks2:40 40

enter name:kalyan
enter age:22
enter marks1 and marks2:30 40

enter name:arvind
enter age:24
enter marks1 and marks2:60 40

17Around the World of C

enter name:anil
enter age:24
enter marks1 and marks2:40 50

enter name:rohit
enter age:21
enter marks1 and marks2:40 50

printing details of students.......
name:kalyan
age:=22
marks1=30.000000 marks2=40.000000 total=70.000000

name:ravi
age:=23
marks1=40.000000 marks2=40.000000 total=80.000000

name:rohit
age:=21
marks1=40.000000 marks2=50.000000 total=90.000000

name:arvind
age:=24
marks1=60.000000 marks2=40.000000 total=100.000000

name:anil
age:=24
marks1=40.000000 marks2=50.000000 total=90.000000

ASSIGNMENT PROBLEMS

1. Write the various steps involved in executing a c program and illustrate it with the help of
flowchart

2. What are different types of integer’s constants? What are long integer constants? How do these
constants differ from ordinary integer constants? How can they be written and identified?

3. Write a function program to convert Fahrenheit to centigrade using the formula
Celsius=5*(farenheit-32)/9.

4. Write a c module to compute simple and compound Interest using the formula
SI =P*N*R/100 and CI= P*(1+R/100)^N

5. Write a program to prepare name, address, and telephone number of five of your friends. Use
structure called friend.

18 C & Data Structures by Practice

6. Write a program to store number, age and weight in three separate arrays for 10 students.
At the end of data entry print what has been entered.

7. Using the formula A=Squareroot(s*(s-a)*(s-b)*(s-c)) compute area of the triangle. S = (a+b+c)/
2, and a, b, and c are sides of the triangle

Solutions to Objective Questions
1. stdio.h 2. b 3. d 4. c 5. a 6. b
7. d 8. True 9. false 10. True 11. c 12. True

13. False 14. True 15. True

 2.1 INTRODUCTION
We have a problem on hand of finding maximum of three numbers using a computer and C language.
For this problem to be executed by a computer, you will need C compiler and a C program to get us the
result. C compiler is a tool, where as C program is to be developed by you after understanding the
process involved in obtaining the results. What are the tools available for making the program understand
the problem better and thus develop an optimal C Code. The following techniques / tools help you in
better understanding the problem at hand.

Algorithm : It is a step by step logical procedure to be adopted for achieving the solution.
Flow Chart : Graphical and diagrammatic presentation, using standard flow chart symbols, of

logical steps in a procedure to be adopted for obtaining the solution for a give problem.
Let us solve the problem of finding maximum of three numbers using above techniques.

2. 1.1 Flow Charts

The symbols used to describe logical steps in a procedure are given at Fig. 2.1

pí~êíLp íçé
açÅìãÉåí

mêÉé~ê~ íáçå
ç Ñ=Ç~í~

`çååÉÅíç ê
aÉÅáëáçå

pçêí

a áëé ä~ó

mêçÅÉëë

PROGRAMMING BASICS

CHAPTER

2

20 C & Data Structures by Practice

lê

pìããáåÖ=gìåÅíáçå pÉèìÉåíá~ä
~ÅÅÉëë

a áêÉÅí
p íçê~ÖÉ
~ÅÅÉëë

e~êÇ=Çáëâ

a~í~
fåéìíL
çìíéìí

mêÉÇÉÑáåÉÇ
mêçÅÉëë

Fig. 2.1 Flow chart symbols

Look at the flow chart we have presented at Fig. 2.2 carefully. It does solve our problem. But does it
solve efficiently? For example, there are 3 decision boxes in the flow chart. Can we redesign the flow
chart with only 2 decision boxes so that our C code is efficient ? Here is the improved version of flow
chart placed at Fig. 2.3a that uses only two decision boxes.

pí~êí

lÄí~áå
s~äìÉë
~I=Ä I=Å

fë=~ =[=Ä

fë=Å=[=Ä

vÉë

vÉë

vÉë

aáëé ä~ó=Äaáëé ä~ó=Å

píçé

aáëé ä~ó=~

kç

kç

kç

fë=~ =[=Å

Fig. 2.3 Flow chart for finding maximum of 3 numbers using two decision boxes

Algorithm

Step1 : Obtain values a,b,c
Step2 : Max = a
Step3 : Check if Max < b

let max = b.
Step4 : Check if max< c. If yes

let max = c
Step 5 : display max
Step 6 : End

Fig. 2.2

21Programming Basics

 2.2 ALGORITHM : THE FOUR IMPORTANT PROPERTIES OF ANY
ALGORITHM MUST POSSESS ARE

a) Finiteness : The algorithm must terminate in finite number of steps.
b) Definiteness : Steps enumerated must be precise and unambiguous.
c) Effectiveness : Each step must be easily convertible to a code.
d) Generality : Algorithm must be applicable all types of input data
e) Input/output : Algorithm to define input and output data.

 We have presented algorithm at Fig. 2.3b, to demonstrate the one to one correspondence between
the algorithm and flow chart. Further note that a well developed algorithm and flow chart greatly simplifies
writing of the C code and further testing. From the basics you have learnt from chapter 1, we can convert
above algorithm and flow chart in to a C code.

Example 2.1 : max.c C code for finding maximum of 3 numbers
//Program to find Maximum of 3 values
#include<stdio.h>
/* declaration of Function prototype. Function FindMax receives
three arguments of type integers, find out maximum of the three
numbers and returns this maximum value to main function*/
int FindMax(int a, int b, int c);
void main()
 { int a,b,c;
 int max; // maximum of three numbers
 // get input data a, b, c from the user
 printf(“enter values of a, b, c \n”);
 scanf(“%d%d%d”, &a, &b, &c);
 // call the function. Use max to store the value returned by function
 max = FindMax(a,b,c);
 //display the result
 printf(“\nMaximum Value of %d, %d, %d is %d”, a, b, c, max);
 getch();
}//end of main
// Function definition
int FindMax(int a, int b, int c)
 { int max;
 max = a;
 if (max < b)
 max= b;
 if (max < c)
 max = c;
 return max;
 } // end of function FindMax
/*
OUTPUT:
enter values of a, b, c
2 5 8
Maximum Value of 2, 5, and 8 is 8
*/

22 C & Data Structures by Practice

 2.3 PROGRAM DEVELOPMENT STEPS

a) Understand the problem at hand.
b) Identify what are the inputs and outputs required. It will help you to conceptualize the prob-

lem as shown below

çìíéìícìåÅíáçåáåéì íë

Fig. 2.4 Conceptualization of a problem

c) Use flow chart or algorithmic approach to define functionality.
d) Test the functionality by using test data.
e) Writing of C code.

i) Write the main program and call the function to achieve desired results. For example in
2.1, we have called a function FindMax.

ii) Write C code for function declared in the main program.
f) Debug and remove errors
i) Syntax errors. These errors are easy to remove. Compiler pin points syntactical errors.

ii) Logical Errors. Compiler can not catch these errors. Only extensive testing can resolve
these errors.

iii) Run time errors. The examples are linking errors or errors that can occur at run time of the
program like
• division by zero.
• array out of bounds.
• exceeding of allocated limits.
• errors due to data type.

g) Testing and Validation. Design the test data, called test cases that would test the correct
functioning of the algorithm under
i) normal conditions.

ii) Best case considerations
iii) worst case considerations.

Test cases chosen must be exhaustive to test boundary conditions of the algorithms.
h) Documentation to keep track of development and changes incorporated in the programs so

that program maintenance becomes easier later.

23Programming Basics

 2.4 ABOUT A, B AND C
Dennis Ritchie of Bell Telephone Laboratories, now known as AT&T Bell labs, originally developed C
language. C is a successor of two other languages known as A and B at the same laboratories. Later, in
the year 1978, Brain Kennigan and Dennis Ritchie jointly published, description of C language. This
language has become very popular owing to its rich features and found itself to be popular among
students and Industry. American National Standards Institute(ANSI) has standardized the c language.

C is very versatile as it combines the features of high level languages and also low level language like
assembler and hence often called as middle level language. Unique feature of C language is that it
allows user to control hardware directly, in addition to providing conventional features of a high level
language like good user interfaces and high computational and commercial processing ability.

C language abets structured programming, in that modules can be developed independently and can be
compiled separately and can be linked to perform the desired tasks. Modularity and good program
organization make C programs readable and easily maintainable.

 2.5 STRUCTURE OF C LANGUAGE

C Language program will have :
a) Include section wherein all the header files provided by the supplier of the compiler or written

by the user are declared. For example, we have defined stdio.h to include standard input and
ouput routines.

b) Preprocessor directives like #define etc. for example, we have defined
#define PI 3.14159 in programs in chapter 1.

c) Function Prototypes. These are advance information to compiler that program uses these func-
tions, but definitions can be found after main program. A function prototype will have

 ReturnType Function name (Argument List);

int FindMax (int a, int b, int c);

Function Definition is given after main program as

int FindMax (int a, int b, int c)
 {
 // Function Code here
 }

24 C & Data Structures by Practice

d) Structure and Union Declarations. Refer to program using structures
 we have dealt in Chapter 1. Recall the structure called sportsball

// declare a structure
struct SportsBall
 { char color[20];
 float radius;
 float area; };
typedef struct SportsBall stsb;
stsb ball[10]; //maximum of 10 Foot balls

The structure defined before main section are globally available to all
functions.

e) Main function. This is the main function and contains declarations and definitions of vari-
ables. We generally obtain the data from the user in main function. Main function in turn calls
a function and supplies the inputs to the function through arguments. Main also displays the
solution to the user. In effect, we can call the main as interface with the user i.e. obtain the
inputs, call a function and process the input and finally display the result.

d) Note that C language is a case sensitive and each statement is separated by a semi colon.
Except group statement that precedes opening brace { . For example observe that void main (
) and function definition statement int FindMax (int a, int b, int c), did not have semi colons.

 2.6 C LANGUAGE BASICS
Declaration of Variables: In C language all variables must be declared before they are used.
A variable can consist alphabet and digits. Either upper and lower case or mixtures of both
cases are allowed. A variable can not start with a digit. It can start with an _. The allowable
characters in C language are alphabets A to Z, a to z, numbers 0 – 9 and following special
characters.

 ! * ^ # % / + % ()
- “ | = { } [] ‘ <
> : ; , ~ ? & _ . BLANK

Identifiers : Identifiers are names given to variable, function names, a structure names etc.
The valid variables are : basic_pay, hra, FindArea(), d2000k, _std
The invalid variables and the reasons are :

2found can not start with a digit
 basic-pay illegal character -.
 Your Age blank space

25Programming Basics

Keywords : Reserved and have special meaning in C language. A few of the
 important and commonly used keywords are:

auto break case char const continue double default
do else extern enum float for goto if
int long register return short signed sizeof static
struct switch typedef union unsigned void volatile while

Tokens : A token is an atomic word that is recognized by the compiler and that which will not be broken
further. It can be a single character or a group of characters that can be recognized by a C compiler. Ex
case, default, main, and goto etc.

 2.7 DATA TYPES
What is a data type ? simply put it defines range of permitted values and operations that can be performed
on the data type. Data Types, also called intrinsic data types supported by C language is given at Fig. 2.5.
The ranges allowed for a 32 bit IBM PC and memory requirements are highlighted at Table 2.1.

a~í~=qóéÉ

sç áÇ

få íÉÖê~ ä=qóéÉ cäç~ í=qóéÉ

få íÉÖÉê
`Ü~ê=N=ÄóíÉ

ë áÖåÉÇ=áå í ìåëáÖåÉÇ=áå í

ëÜçêí=áåí

äçåÖ=áåí

ÇçìÄäÉ

ìåëáÖåÉÇ=ÅÜ~ê

ë áÖåÉÇ=ÅÜ~ê

Ñäç~ í

äçåÖ=ÇçìÄ äÉ

äçåÖ=áåí

äçåÖ=áåí

Fig. 2.5 Data type supported by C language

26 C & Data Structures by Practice

 Table 2.1: Ranges allowed for various data types for a PC

Data type Size(bytes) Range allowed Remarks
signed char 1 –128 - 0 - 127 –A , –d etc
Unsigned char 1 0 -127 A , B , a , b etc
short signed int 2 –32768 to 0 to 32767 –129 , +31560 etc
short unsigned int 2 0 - 65,535 34560 , 789 etc
long signed int 4 –2,147, 483, 648 to

2 , 147, 483, 647
long unsigned int 4 0 to 4 , 294, 967, 295
Float 8 – 3.4e 38 to +3.4 e 38
Double 8 – 1.7 e 308 to +1.7e 308 double precisionmeans

 more bits for significant
and exponent.

long double 10 –1.7 e 4932 to + 1.7 e 4932

The smallest , individually addressable memory unit is byte. A byte is 8 bits. From Table 2.1 , observe
that both short int and int have same memory requirements ob 2 bytes. Similarly an unsigned int will
have same requirements of int. For an ordinary int leftmost bit is reserved for sign bit. Therefore ,
balance bits are only 15 and hence range is only 2 ^ 15 i.e 32767 . Where as unsigned int complete 16
bits (2 bytes) , i.e. a range of 2 ̂ 16 = 65, 535 are possible. Hence unsigned int will have double the
range of ordinary int.

A word about data type called void. It must be clearly understood that void is a data type . It is not
“nothing” or NIL or NULL or 0. We can draw an analogy here for better understanding the concept of
void. When dealing with gravitational force, g = 9.8 mt/sec 2 is a state. Similarly g = 0 or -9 also a state.
Void is a data type which does not belong to any other data types , but is a data type of type void.

 Data Types can also be distinguished as

a) Intrinsic or basic data types like int, char, float, double etc
b) Derived data types : array , pointer etc
c) user defined data types : Structure , Unions etc

 2.8 CONSTANTS
The variables declared as constant can not change their values. There are four type of constants in C
language. They are: Integer constants , floating point constants, character constants , string constants,
enumeration constants , and symbolic constants.

a) Integer Constants : They can be sub divided into

27Programming Basics

Decimal integer constants : 0 10 -745 999

Unsigned integer constant an be specified by appending letter U at the
end . Ex : 55556U or 55556u

Long integer constant can be specified by appending the letter l s at the
end . For example 789654234L or 7896s

Octal integer constants :only digits between 0 to 7 are allowed. All
Octal numbers must start with 0 digit to identify as octal number
 Allowed octal constants : 0777, 001 , 0117 , 07565L (octal long)
 Illegal octal constants are : 089 - 8 is illegal , 777 - does not start with 0
 : -0675.76 - . is illegal

 Hexa decimal constants : A hexa decimal number must start with 0x or
 0X followed by digits 0 to 9 or alphabets a to f, both upper case or lower case
 allowed. Allowed hexa decimal constants are : 0xffff , 0xa11f , 0×1, 0x65000UL
 Illegal hexa decimal constants are : 0x14.55 , illegal character “.”

b) Floating point constants. They are base – 10 number that can be represented either in expo-
nent form or decimal point representation.Valid floating point constants are : 0.01 , 789.89765,
5E-5 , 1.768E+9 Invalid floating point declarations are:

6 invalid . must contain exponent or float point.
5E+12.5 Invalid as exponent can not be float.
6,789.00 Invalid character“,”

c) Character constants. Character constants can be declared based on the character set fol-
lowed in a computer. ANSI have standardized these values as shown below. Appendix A gives
ASCII character set.

A 65 a 097 NULL 000
B 66 b 098 LF(line feed) 010
Z 90 z 122 CR(carriage return) 013

A character constant contains a single character enclosed within a pair of single quote marks.
Examples of character constants are:

‘5’ ‘X’ ‘;’ ‘ ‘
Note that the character constant ‘5’ is not the same as the number 5. the last constant is a blank
space. Character constants have integer values known as ASCII values. For example, the
statement
 printf(“%d”,’a’);
would print number 97, the ASCII value of letter a. Since each character constant represent an
integer value it is also possible to perform arithmetic operations on character constants.

28 C & Data Structures by Practice

Special Characters that can not be printed normally , double quote(“) ,apostrophe(‘) , question
mark(?) and backslash(\) etc can be represented by using escape sequences. An escape sequence
always starts with \ followed by special character stated above .

d) String Constants . String constant can contain any number of characters in sequence , but
enclosed in double quotation marks.

 “new delhi” , “14 Nov 1954” , an empty string is “”.
Please note that NULL character \0 indicates NULL character and is used by C language to
indicate the end of a string.

 Table 2.2 Escape sequences and its special effects

Special Character Escape sequence ASCII value
Bell \a 007
Back space \b 008
Horizontal tab \t 009
Vertical tab \v 011
New line \n 010
Carriage return \r 013
Quotation mark \” 034
apostrophe \’ 039
Backslash \\ 092
Null \0 000

 e) Enumeration Constants

 Enumeration is a user defined data type and its members are constants. It can be used effectively to
associate integer values to variables. The syntax and example are shown below

Syntax storage class enum variable { var1, var2, var3 ……..};
 Examples are : enum bool { FALSE,TRUE};
 enum colors { RED,BLUE,GREEN};
 enum waitque { P0 , P1,P2=5,P6};
 Then integer values assigned with above enum declarations are
 FALSE =0 TRUE =1
 RED =0, BLUE =1, GREE=2
 PO=0,P1=1,P2=5,P6=6 and so on
 We can create instances of enum variable and assign data as shown below.
 color color1,color2;
 color1=2; // means color1 will be GREEN

In C language , enumeration is a list of constant integer values. This enumeration type of declaration
is useful , when we want to assign constant integer values to names , for example 0 and 1 to a variable.
Consider the example shown below

29Programming Basics

enum bool { no, yes} ; no has a value 0 and yes has a value = 1
enum month {jan, feb, mar, apr};
enum color { red , yellow=3 , green }; // red = 0 , yellow =3 and green =4

f) Symbolic Constants. A symbolic name substitutes a sequence of characters or numerical
value that follows it.

define PI 3.14159
define MAX 50
define NAME thunder

Note that there is no semi colon at the end of statement
2.8.1 Declaration and Assignment Values to Variables. Declaration means mapping the association
between the variables and data types. Following are valid declarations

int x , y , z;
 float radius = 2.56 . //This is declaration and also assignment of value to the
 variable. We can also call this activity as definition.
 float radius[25] ; // declaration of array of data type float with size 25
 double root1 = 0.3123e-10; // we have used exponent form. 0.3123*10^10

short x , y=0 , z; // you can declare variables as short or short int
 short int x , y=0 ,z; // Similarly long int can be declared as long int or long

 char text[] = “New Delhi”; // The string contains 9 characters . It will be stored
 in an array as shown below. Note that we have left blank for size of the array.

 You could also declare specifying the size , but size to be correctly specified ,
 taking care of null character as char text[9] = “New Delhi”

name of the array : text : N e w D e l h i \0
Subscript value : 0 1 2 3 4 5 6 7 8 9
text[0] contains character N
 text[9] contains null character(\0)

 2.9 EXPRESSIONS
 An expression can comprise any one of the following

a) A single character or a number.
b) A single constant or a variable.
c) A combination of variables or constants , inter connected by operators.
d) A logical condition that is true (value 1) and false (value 0).

 Examples of expressions are:
root1=(-b+sqrt(d))/(2*a); x=y; ++i; x = = y; x=oyez;

30 C & Data Structures by Practice

Example 2.2 roots.c A program to compute roots of a quadratic equation. In this example observe,
declaration , assignment , expressions , math function
/*This program finds the roots of a quadratic equation
Formula to compute the roots are (-b+sqrt(b*b-4*a*c))/(2*a)
and (-b-sqrt(b*b-4*a*c))/(2*a)
*/
#include<stdio.h>
#include<conio.h>
#include<math.h> // for square root function
// function prototype
void FindRoot(float a , float b , float c);
void main()
{ // declare three variables as double precision numbers

 int a,b,c;
 // obtain the coefficients
 printf(“\nenter coefficiants of x^2 , x , and constant:”);
 scanf(“%f %f %f ”,&a,&b,&c);
 // Call FindRoot function. We are sending a , b , c values as arguments
 FindRoot(a,b,c);
 getch();

}// end of main
// function definition
void FindRoot(float a,float b,float c)
 { double d,root1,root2;

d = ((b*b)-(4*a*c));
if(d>=0)
{ printf(“\n roots are real\n”);

root1=(-b+sqrt(d))/(2*a);
root2=(-b-sqrt(d))/(2*a);
printf(“\n root1=%f”,root1);
printf(“\n root2=%f”,root2);

}
else
{ printf(“\n roots are imaginary\n”);

printf(“\nroot1=%e+i%e”,-b/(2*a),sqrt(-d)/(2*a));
printf(“\nroot2=%e-i%e”,-b/(2*a),sqrt(-d)/(2*a));

}
}// end of function call
/*
OUTPUT:
enter coefficiants of x^2 , x , and constant: 1 -3 2
roots are real
root1=2.000000
root2=1.000000
*/

31Programming Basics

 2.10 ARITHMETIC OPERATORS
The basic (also known as intrinsic) operators are

+ addition – subtraction * multiplication

/ division % modulus (remainder after division).

It may be noted that C language does not support exponentiation. Although we will use ^ symbol to
denote exponentiation in expression , we have to use a library function call pow to calculate the
exponentiation.

Type conversion : If the variable involved in an operation are of different type , then type conversion is
carried out before the operation.
 If the operation is between a float and double , the float will be converted to double and the result
will result in double
 If the operation is between a float or double or long double and a char or int , then char or int will
be converted to float or double or long double and the result will result in float or double or long double.
 If the operation is between a int and long int, the int will be converted to long int and the result
will result in long int.
 If the operands are not float or long int , they will be converted to int.

Type Cast : Suppose , we want to declare the result in particular data type , we can type cast as shown
below.

int a , b;
 float x;
 x=(float)a/b; // a/b is integer division and the result is converted to float .

Unary operators : In unary operator , operator precedes a single operand. Unary operators are : - , ++
, — . sizeof . Examples are :
 - 4.0 , -5*(A+B)
 ++ i , i++ , —i , i—

++ , — operators are called increment and decrement operators. If they precedes the operand , then first
the variable is incremented , then operation is performed. If they follow the operand , then the operation
is performed first , and the variable is incremented.

int count = 1;
 printf(“%d” , count); // out put will be 1
 printf(“%d” , ++count);
 /* count will be incremented by one and then operation of
 print is performed . Output will be 2. Now , if you use*/
 printf(“%d” , count++);
 /* count will be printed first. Output is 2. Then count will
 be incremented by 1 to 3.*/
 printf(“%d” , count); // out put will be 3.

32 C & Data Structures by Practice

sizeof operator will be useful for determining the size allocated for a data type by the computer.
 char city[]=”New Delhi”;
 printf(“Size of integer: %d”, sizeof(int));

 printf(“Size of float: %d” , sizeof(float));
 printf(“Number of characters in String constant city :%d” , sizeof (city));

 Output of above statements would be
 Size of integer : 2
 Size of float : 4

 Number of characters in String constant city:9

 2.11 RELATIONAL AND LOGICAL OPERATORS
The relational operators are : > >= < and <=. These four relational operators have same
precedence. However , they have lower priority than arithmetic operators.
The two more operators , known as equality operators = = and ! = have priority just below relational
operators.

Logical Operators : These are && and ||. Evaluation of expressions connected by logical operators are
done from left to right and evaluation stops when either truth or false hood is established. In the statement
shown below
 while ((iflag==0) && (text[i]!=’E’))
first iflag == 0 is evaluated , if it is true , then only second expression text[i]=!E is evaluated. In other
words , evaluation stops as soon as truth or false is established.

Conditional Expressions : Question Mark operator.

Suppose , you want to allot 10 additional bonus marks to students , who put in 100 percent attendance ,
and all others additional 2 marks. This would result in statements like

If (attendance > 100)
 marks += 10; // this is a compound statement . It means Marks=Marks +10
 Else
 marks +=2;
 C language gives you facility of conditional operator, using which above 4 lines can be coded as a
single line

 marks = (attendance > 100) ? marks + 10 : marks + 2;

The syntax is : z = exp1 ? expr 2 : exp3. Exp1 is evaluated first. If it is true z is equated to the result
of exp2 . Else z is equated to exp3.

Bit Wise Operators :

Bit wise operators available in C Language are

33Programming Basics

 & Bit wise AND. Used for masking operation. For example if you want to mask first four
bits of a number ‘n’ , then we will mask n with a number whose last four bits are 1s. i.e.
0001111. In Octal representation it is 017(Remember an octal number starts with 0 and a
hexa number starts with 0x)

n= 1 0 0 1 0 1 0 1 =149(decimal)
& 0 0 0 0 1 1 1 1 = 017(octal)

result n = 0 0 0 0 0 1 0 1

Note that last four bits are 0101 and are unaffected i.e. they are just reproduce in the
result , whereas , the left four bits are all 0s. i.e. they are masked.

| Bitwise OR. This operator is used when you want to set a bit. For example , we want to
set 0th and 2nd bit to 1 for n=144 , then we will use | operator with n and as shown below

n= 1 0 0 1 0 0 0 0 =144(decimal)
| = 0 0 0 0 0 1 0 1 = 005(octal)

result n = 1 0 0 1 0 1 0 1 =149(decimal)

^ Bit wise Exclusive OR. Exclusive OR also known as odd function , produces output
1 , when both bits are not same (odd) and produces a 0 when both bits are same.

n = 1 0 0 1 0 1 0 1 =149(decimal)
^ = 0 0 0 0 0 1 0 1 = 005(octal)

result n = 1 0 0 1 0 0 0 0 =149(decimal)

<< Left Shift. Shifting left by one position , bits of a binary number is
 equal to multiplying the number with 2.

n = 1 0 0 1 0 0 0 0 =144(decimal)
n<< 1 1 0 0 1 0 0 0 0 0 = 288(decimal)
n<< 2 1 0 0 1 0 0 0 0 0 0 = 576

>> Right Shift. Shifting right by one position , bits of a binary number is equal to division of the
given number with 2.

n = 1 0 0 1 0 0 0 0 =144(decimal)
n>> 0 1 0 0 1 0 0 0 = 72(decimal)
n>>2 0 0 1 0 0 1 0 0 = 36(decimal)

~ Tilde operator . one‘s complement Operator. This is a unary operator , used to find one’s
complement of a given number .

n = 1 0 0 1 0 1 0 1 =149(decimal)
~n = 0 1 1 0 1 0 1 0 = bit wise complement

34 C & Data Structures by Practice

Example 2.3 bitwise.c

//A program to demonstrate the working of bitwise operators.

#include<stdio.h>
int main()
{
 int n = 149;

int res;
res = n & 0017;
printf(“The resultant of Bit wise AND operator is : %d \n”, res);
res = n | 0017;
printf(“The resultant of Bit wise OR operator is : %d \n”, res);
res = n && 0017; // this is logical AND . Truth or false will be output
printf(“The resultant of Logical AND operator is : %d \n”, res);
res = n || 0017; // this is logical OR . Truth or false will be output
printf(“The resultant of Logical OR operator is : %d \n”, res);
res = n ^ 0017;
printf(“The resultant of Exclusive operator is : %d \n”, res);
res = n <<2;
printf(“The resultant of shift left (by 2 bits) operator is : %d \n”, res);
res = n >>2;
printf(“The resultant of shift right (by 2 bits) operator is : %d \n”, res);
res = ~n;
printf(“The resultant of NOT operator is : %d \n”, res);
return 0;

}

The resultant of Bit wise AND operator is : 5
The resultant of Bit wise OR operator is : 159
The resultant of Logical AND operator is : 1
The resultant of Logical OR operator is : 1
The resultant of Exclusive operator is : 154
The resultant of shift left (by 2 bits) operator is : 576
The resultant of shift right(by 2 bits) operator is : 36
The resultant of NOT operator is : -150*/

 2.12 PRECEDENCE AND ASSOCIATION OF OPERATORS
The precedence and association of the operators are shown at Table 2.3. The operators at the top have
priority more than those that appear later in the table , i.e. operators priority is highest at the top of the
table and lowest at the bottom of the table. Operators on the same line have same priority.

35Programming Basics

• , / and % have all same priority
• Unary operators like + , - , and * have more priority than binary operators

 2.13 INPUT AND OUTPUT STATEMENTS
2.13.1 Scanf Function : The statement format is

 scanf(format , arg1 ,arg2 …..)
 format specifiers and the data types they handle is shown below:

%c Character
%d Decimal integer
%h Short integer
%i Decimal , octal(prefix by 0) , Hexadecimal(prefix by 0x)
%o Octal integer
%u Unsigned decimal integer
%x Hexadecimal
%f Float
%e Float , double precision
%g Float
%s String followed by null character (\0 will be added automatically)
[…] String that includes white space characters like tabs , blank etc

Table 2.3 Precedence and association rules for the operators.

Operator Association
Function call () , [] ,-> . Left to right
! ~ ++ — + - ,^, sizeof Right to left
* / % Left to right
+ - Left to right
<< >> Left to right
< <= > >= Left to right
= = != Left to right
& Left to right
^ Left to right
| Left to right
&& Left to right
|| Left to right
?: Right to left
= += -= *= /= %= ̂ = != <<= >>= Right to left
, Left to right

36 C & Data Structures by Practice

 2.13.2 Printf Statement: The format for printf statement is : printf(format,
 arg1,arg2..)

 %c Character
%d Decimal integer
%h Short integer
%i Decimal , octal(prefix by 0) , Hexadecimal(prefix by 0x)
%o Octal integer
%u Unsigned decimal integer
%x Hexadecimal
%f Float
%e Float , double precision
%g Float

 %s String followed by null character (\0 will be added automatically)

You have already experimented with integers and float , and double variables. In this section , we will
understand usage of other format specifiers. For example consider following statements.

Example 2.4 inout.c .
/*inout.c . A program to demonstrate usage of input and out put statements of
C Language using scanf and printf functions*/
#include<stdio.h>
void main()
{ int i;

int n=149; // arbitary integer . we will use it to display in octa & hexa
short int j;
long int k;
float a,b,c;
double root1,root2;
char d;
char city[20];

printf(“\nEnter value < int>:”);
scanf(“%d”,&i); // enters into slot of i
printf(“\nValue of <int >signed decimal integert> %d” ,i);

printf(“\nEnter <long int> value:”);
scanf(“%ld”,&k); // enters into slot of i
printf(“\nValue of <long intl> %ld \n”,k);

printf(“\nEnter decimal value:”);
scanf(“%i”,&i); // enters int slot of i
printf(“\nValue of <decimal> %i \n”,i);
printf(“\nEnter octal(0-prefix) value:”);

37Programming Basics

scanf(“%o”,&i); // enters into slot of i
printf(“\nValue of <decimal> %d \n”,i); //item displayed without leading 0.
printf(“\nEnter hexa (0x-prefix) value:”);
scanf(“%x”,&i); // enters into slot of i
printf(“\nValue of <decimal> %d \n”,i); //item displayed without leading 0x.

// print n in octal and hexa decimal number representations.
// You can use these formatting command to convert decimal to binary.
// item displayed without leading 0x.
printf(“\n Value of <n=149> in hexa %x “,n);
// item displayed without leading 0.
printf(“\nValue of <n=149> in octal %o “,n);
/* for input and output statements for real variables , we can use
float and double precision. In float we can use decimal or exponent
notation. Note that we can use following statement to control output
format %8f width of float is 8 %8.2f total width is 8 out of which
two charaters after decimal %.2f two charaters after decimal*/

printf(“\nenter float values<a,b,c>:”);
scanf(“%f%f%f”,&a,&b,&c); // float variable in decimal format
printf(“\nvalues of <a,b,c in decimal float format> %f:%f:%f “ , a,b,c);
printf(“\nusage of <8.2f>:”);
printf(“%8.2f%8.2f%8.2f\n”,a,b,c);

printf(“\nusage of <double precision float number >:”);
printf(“\nenter double precision float values<root1,root2>:”);
scanf(“%e%e”,&root1,&root2); // root1& 2 are read as exponent format
printf(“\nvalues of root1& 2 in double form : %e%e”,root1,root2);
/* another form for outputting float variable is ‘g’ type of
conversion.Here display is either in f format or e format. Trailing
zeros are suppressed*/
printf(“\n%g%g\n”,root1,root2);

} // end of inout.c
/*OUTPUT:
Enter value < int>:1
Value of <int (signed decimal integert> 1
Enter <long int> value:1234567
Value of <long intl> 1234567
Enter decimal value:12
Value of <decimal> 12
Enter octal(0-prefix) value:012
Value of <decimal> 10
Enter hexa (0x-prefix) value:0xf
Value of <decimal> 15

38 C & Data Structures by Practice

 Value of <n=149> in hexa 95
Value of <n=149> in octal 225
enter float values<a,b,c>:3.5 4.5 6.5
values of <a,b,c in decimal float format> 3.500000:4.500000:6.500000
usage of <8.2f>: 3.50 4.50 6.50
usage of <double precision float number >:
enter double precision float values<root1,root2>:1.00005 0.000565
values of root1& 2 in double form : -9.255960e+061-9.255960e+061
-9.25596e+061-9.25596e+061

2.13.3 Single Character Input & Output Statements
Commands getchar() and putchar() can be used to input single character at a time from keyboard.
Consider the following program , where in we will read characters into an array and output the array in
upper case.

Example 2.5 getchar.c

//C program for demonstrate usage of getchar and putchar
#include<stdio.h>
void main()
{

char city[80]; // declare an array of 80 characters length
char c; // we will use it to store the character input
int i=0,j=0; // i & j we will use them as counters

// read in line .‘\n’ is a end of line recognized when ‘enter’ is pressed
 while ((c=getchar())!=’\n’)
 city[i++]=c; // store it in city[i] and then post increment i.

// store the value in j. This is because we will use i as counter once again.
j=i;
i=0;
while (i<j) // output the character in uppercase

putchar(toupper(city[i++])); // post increment i
 } // end of main.
/*
OUTPUT:
hai srinivas <pressed enter>
HAI SRINIVAS
*/

Observe that in using while loops we have used brace brackets only for clarity. These while loops have
only one line in the body , hence could have been written with out brace brackets as

while (c!=’\n’)
 city[i++]=c;

39Programming Basics

2.13.4 Commands Gets and Puts.
These commands are used to input and output strings

#include<stdio.h>
void main()
{

char city[80]; // declare an array of 80 characters length
 printf(“\nEnter any line: \n”);

gets(city); // read a line till ‘enter’(new line character is pressed).
puts(city); // output a line

}

/*
OUTPUT:
Enter any line :
This is taken by gets function.
This is taken by gets function.
*/

OBJECTIVE QUESTIONS

1. Is the given program valid? Valid/invalid

 main()
 { int n=10;

printf(
“ value of n is %d “,
n);

 }
2. The real constants can be written in ——————and ———————form.

3. What is the output of the following program? ——————and—————
 main()
 { char ch=65;

printf(“ %d %c “, ch,ch);
 }

4. What is the output of the following program? ———————
 main()
 {printf(“ %d “, -4 % -3);
 }

5. Given a>c>b , a=d What is the value of the following expression?

a>b?(a>c?(c>d?4:5):3):(b>c?6:8)
a) 20 b) 5 c) 10 d) 15

40 C & Data Structures by Practice

6. The statement int i=j=k=l=m=10; is valid/Invalid

7. what is the output of the following program?
 int i=10;
 while(i = = 0)
 {
 printf(“%d\n ”,i);
 i—;
 } output — — — — — — — — — — — — — — —

8 What is the output of following code
 int i=0;
 printf(“%d%d%d”,i++,i++,i++); output : —— — — — — — — —

9 What is the output of following code output: — — — — — — — —

 main()
 { int d,i=3;
 d=i++ + ++i;
 printf(“%d \t %d”,i,d);
 }

10 Given a= 00110010 (50) . Write C statements to determine whether bit 1 in the above pattern is
ON/OFF.(least significant bit is bit 0)

a) a & 0x03 b) a|0x03 c) a & 0x02 d) a | 0x02

11 ASCII value for A , Z are

a) 66 ,91 b) 65,90 c) 97 , 122 d) 96 121

12 ASCII value for a , z are

a) 66 ,91 b) 65,90 c) 97 , 122 d) 96 121

13 To find a raised to power of b , the function we would use is

a) a^b b) a**c c) pow(b,a) d) pow(a,b)

14 What is ascii value for 0 and 9

a) 30 39 b) 31, 40 c) 31,39 d) 56, 64

15 To read a character and echo the character on to screen , with out the need to press enter key,
appropriate function is

a) getch() b) getche() c) getchar() d) gets()

16. A variable can start with a number True/False

17. Int and short occupy —————————bytes of memory

41Programming Basics

18 Declaration of variable can be done anywhere in the program True/False

19 Range of character data type is ———————————————

20 Range of signed integer data type is ———————————————

REVIEW QUESTIONS

1. What are different data type of c

2. Distinguish a variable and constant with examples.

3. What is a token.

4. Explain program development steps.

5. What are logical errors and run time errors.

6. What are the key words? Explain with example.

7. What are Integer and float type constants?

8. What are character constants.

9. How string constants are declared and stored. Explain with examples.

10. What are enumeration constants.

11. Explain escape sequences for new line , tab .

12. Explain type conversion operator used in printf statements

13. Explain typecasting with examples.

14. What are relational and logical operators. Discuss their priorities.

15. What is the difference between & , && operators.

16. What is the difference between = , = = operators.

17. Explain ? operator.

18. Show the working of bitwise AND operator with example. What is masking operation.

19. Show the working of bitwise OR and Exclusive OR operators with example.

20. Distinguish unary and binary operators.

42 C & Data Structures by Practice

SOLVED PROBLEMS

1 Write a program to find out the maximum of 2 given numbers using conditional operators*/

// max.c #include <stdio.h>
#include<conio.h>
//function prototype declarations
int MAX(int a,int b);
main()
{

int p,q,r;
clrscr();
printf(“enter values for p,q\n”);
scanf(“%d%d”,&p,&q); //input from the user
r=MAX(p,q); //function call
printf(“maximum no. is: %d\n”,r);
getch();

} //end of main
int MAX(int a,int b)//function definition
{

return(a<b?b:a); //return the max value to main
}//end of function MAX

/*
OUTPUT:
enter values for p,q:
2 5
maximum no. is: 5
*/
2 Write a program that reads the 3 sides of a triangle and prints and checks whether its rightangled

or not
// check.c
#include<stdio.h>
#include<conio.h>
//function prototype declarations
void RIGHTANGLED(int p,int q,int r);
void main()
{

int a,b,c;
clrscr();
printf(“enter the sides a,b,c\n”);

43Programming Basics

scanf(“%d%d%d”,&a,&b,&c); /*input sides from the user*/
RIGHTANGLED(a,b,c); /*function call*/
getch();

} /*end of main*/
void RIGHTANGLED(int p,int q,int r) /*function definition*/
{ p*=p;

q*=q;
r*=r;
/*checking the condition of right angled triangle*/
 if(((p+q)==r) || ((q+r)==p) || ((p+r)==q))

 printf(“rightangled\n”);
 else

 printf(“not rightangled\n”);
} /*end of function RIGHTANGLED*/
/*
OUTPUT:
enter the sides a,b,c
3 4 5
rightangled
*/
3. Write a C program to print the following figure:

*
* *
* * *
* * * *

// star.c
#include<stdio.h>
#include<conio.h>
void figure5(int m); //function definition
void main()
{ int n;

clrscr();
printf(“enter number of lines\n”); /*how many lines*/
scanf(“%d”,&n);
figure5(n); /*function call*/
getch();

} /*end of main*/
void figure5(int m) /*function definition*/
{ int i=0,j=0;

for(i=0;i<=m;i++) /*outer loop begins*/
{

for(j=0;j<i;j++) /*inner loop begins*/
{ printf(“*”);

44 C & Data Structures by Practice

} /*end of inner loop*/
printf(“\n”); /*print in next line*/

} /*end of outer loop*/
} /*end of function figure5*/
/*
OUTPUT:
enter number of lines:4

*
* *
* * *
* * * *

*/

4 Write a program to find out whether a given year is leap or not

// leap.c
#include<stdio.h>
#include<conio.h>
void LEAP(int n); //function definition
void main()
{

int x;
clrscr();
printf(“enter the year\n”);
scanf(“%d”,&x); /*input year from the user*/
LEAP(x); /*function call*/
getch();

}/*end of main*/
void LEAP(int n) /*function definition*/
{

if((n%400==0)||((n%4==0)&&(n%100!=0)))
printf(“leap year\n”);
else
printf(“not leap year\n”);

} /*end of function LEAP*/
/*OUTPUT:
enter the year:
2000
leap year*/

5 While a program that reads a string and prints yes if all the chars are vowels else prints no*/
// vowel.c
#include<stdio.h>
#include<conio.h>
#include<string.h>

45Programming Basics

#include<ctype.h> // to facilitate using of tolower() and toupper functions
void main()
{

int i,nv;
char x[20];
clrscr();
printf(“enter any string\n”);
scanf(“%s”,x); /*input from the user*/
nv=0; /*nv=number of vowels,initially 0*/
i=0; /*i is the number of chars,initially 0*/
while(x[i]!=’\0') /*when the char of string is not null*/
{ switch(toupper(x[i]))

{ case ‘A’:
case ‘E’:
case ‘I’:
case ‘O’:
case ‘U’: nv++;break;

}
i++;

}
if(i==nv) /*when value of nv equals to i*/
 printf(“yes\n”);
else
 printf(“no\n”);
getch();

} /*end of main*/
/*OUTPUT:
enter any string
education
no */

6 Write a program to find out whether the given number is even or odd
//.even.c
#include<stdio.h>
#include<conio.h>
void EVENODD(int x); //function definition
void main()
{

int n;
clrscr();
printf(“enter a number\n”);
scanf(“%d”,&n); /*input from the user*/
EVENODD(n); /*function call*/
getch();

} /*end of main*/

46 C & Data Structures by Practice

void EVENODD(int x) /*function definition*/
{

if(x%2==0)
printf(“even\n”);
else
printf(“odd\n”);

} /*end of function evenodd*/
/*OUTPUT:
enter a number
123
odd
OUTPUT:
enter a number
222
even
*/
7. Write a program to print the following figure:

 1
 2 3 4
 5 6 7 8 9
 0 1 2 3 4 5 6
 7 8 9 01 2 3 4 5

//format.c
#include<stdio.h>
void figure3(int n); /*function definition*/
void main()
{ int x;

printf(“enter x value”);
scanf(“%d”,&x); /*how many lines*/
figure3(x); /*function call*/
getch();

}
void figure3(int n) /*function definition*/
{ int i,j,l,k=1;

l=n-1;
for(i=1;i<=n;i++,l—) /*outer loop begins*/
{ for(j=0;j<l;j++)

printf(“ “);
 for(j=0;j<(2*i-1);j++)

printf(“%d”,k++%10);
 printf(“\n”); /*print in next line*/
} /*end of outer loop*/

} /*end of function figure3*/

47Programming Basics

/*
OUTPUT:
enter x value7
 1
 234
 56789
 0123456
 789012345
 67890123456
7890123456789*/
8. Write a program to find the GCF of 2 integers

//.gcf.c
#include<stdio.h>
#include<conio.h>
int GCF(int a,int b); /*function definition*/
void main()
{

int p,q,r;
clrscr();
printf(“enter the values of 2 integers\n”);
scanf(“%d%d”,&p,&q); /*input from the user*/
r=GCF(p,q); /*function call*/
printf(“the GCF of %d and %d is %d\n”,p,q,r);
getch();

} /*end of main*/
int GCF(int a,int b) /*function definition*/
{

int x;
x=(a<b)?a:b;
while(x) /*loop begins*/
{

if((a%x==0)&&(b%x==0))
return(x); /*returning the value of x to main*/

x—;
} /*end of loop*/

} /*end of function GCF*/
/*
OUTPUT:
enter the values of 2 integers
2 5
the GCF of 2 and 5 is 1*/

48 C & Data Structures by Practice

9. Write a program to find whether a given num is prime or not
// prime.c
/*Program to find whether a given num is prime or not*/
#include<stdio.h>
void isprime(int x); /*function definition*/
void main()
{ int n,p;

printf(“enter a number”);
scanf(“%d”,&n); /*input from the user*/
isprime(n); /*function call*/

} /*end of main*/
void isprime(int x) /*function definition*/
{ int i,j=0;

for(i=1;i<=x;i++) /*loop begins*/
{ if(x%i==0)

j++;

} /*end of loop*/
(j==2)?printf(“yes.prime\n”):printf(“not a prime\n”);

} /*end of function isprime*/
/*
OUTPUT:
enter a number13
yes.prime*/

10. Write a program to find the number of digits in a number*/
// number.c
#include<stdio.h>
#include<conio.h>
void NUM(int x); /*function definition*/
void main()
{ int n;

printf(“enter the number\n”);
scanf(“%d”,&n); /*input a number from the user*/
NUM(n); /*function call*/
getch();

} /*end of main*/

49Programming Basics

void NUM(int x) /*function definition*/
{ int i=0;

while(x>0) /*when xis greater than 0*/
{ x=(x/10);

i++; /*increment i*/
}
printf(“no. of digits=%d\n”,i);

} /*end of function NUM*/
/*
OUTPUT:
enter the number
1234
no. of digits=4
*/

ASSIGNMENT PROBLEMS

1. Write a c program to count number of lines , number of words , no of open braces , number of
close braces in an input file.

2. Write a c program to compute vlue of e from the series

1 + 1
1!

 + 1
2!

 +
1
3! + …….

3. Write a c program to compute value of ex from the series

1 +
x
1!

 +
2x

2!
+

3x
3!

+ …….

4. Write a program to convert a given integer into
a) Hexa decimal number
b) Octal number

5. Write a program to shift given integer to 2 positions to left.

6. Write program to test if the given integer has 1 in 4 bit position. If its 0 set it to 1.

7. Write a C program to mask given integer of the low 4 bits.

8. Using priorities of the operators evaluate z= 4 * 5/6 + 10 / 5 + 8 – 1 + 7/8.

9 Write a program to take in 6 subjects marks of a student in to an array called marks. Calculate the
average and store it on the same array. Declare the division

50 C & Data Structures by Practice

i division if avg >=60
ii division if avg >=50 and < 60

10 Write a program to print the ASCII table for range 30 to 122 .

Solutions to Objective Questions
1) Valid n=10 2) fractional and exponential 3) 65 , A 4) 1

5) b 6) Invalid 7) infinite loop 8) 0 0 0 9) 5 , 8
10) c 11) b 12) c 13) d 14) a
15) b 16) false 17) one 18) false
19) -128to 127 20) -32768 to 32767

3
CONTROL STATEMENTS

CHAPTER

Computer program is a sequence of steps. Control statements tell the order in which these sequential
steps are to be executed. For example , we have already used while and for statements. We will formalize
and consolidate our understanding of these concepts.

Statement & Blocks : C language consists of statements and blocks. Statements are expression in c
language , terminated with ; . Following are examples of statements:
 Sum+=100; // increment sum by 100 i.e sum=sum +100
 root1 = -b/a ;

{ and } are used to denote start and end of block of statements in C language. Observe that there is no
semicolon after close brace. Block is also called a compound statement as it contains several of the
statements. All the variable declared in a block are local to the block. For example , the variables
declared in a function block , with in brace brackets , are local to that function and are not available out
side the function.

 3.1 CONDITIONAL AND BRANCHING STATEMENTS

3.1.1 If Statement

The syntax is simple and straight forward
if (expression)
 statement;

ÅçåÇáíáçå

cáÖ=PKN ==Åçåíêç ä=Ñäçï =áå=áÑ=ë í~ íÉãÉåí

ëí~íÉãÉåí

C & Data Structures by Practice52

Example 3.0 : checkhigh.c. //A program to find higher of two temperatures
#include<stdio.h>
#include<conio.h> // console input /output for getch() and clrscr()
void main()
{

float temp1,temp2 ;
float max; // to store higher of the two temperatures
printf(“Enter <temperature1 and Temperature2>\n”);
scanf(“%f %f”,&temp1,&temp2);
 max=temp1;
if (max<temp2) // temp1<temp2 , hence equate max with temp2
 max=temp2;
 printf(“\n Higher of the two given temperatures %f and %f = %f \n” ,

 temp1,temp2, max);
getch(); // to observe the result on console

}// end of main
/*
OUTPUT:
Enter <temperature1 and Temperature2>
1.2 3.4
Higher of the two given temperatures 1.200000 and 3.400000 = 3.400000
*/

Note that we have included conio.h for console in and out library. This would facilitate us to use
console functions like clear screen (clrscr()) and getch() for get character operation. Use of getchar()
would make computer wait for input through console. It will only proceed further only when it receives
the input. This feature we can use to observe the result on console. Linux based compilers like gnu C
does not support conio.h.

3.1.2 If – Else Statement: The syntax is
if (expression)

 {
statements;

 }
else
 {

statements;
 }

Else statement is optional. But if used it will be associated with nearest if statement.In the example
shown else is attached to inner most if.

if (totalMarks > 60)
if (total Marks > 70)

 printf(“passed with distinction\n”);
 else

 printf(“passed with first class\n”);

53Control Statements

ÅçåÇáíáçå

åç

ëí~íÉãÉåíë í~íÉãÉåíë

Éñáí

óÉë

Fig. 3.2 : Flow in if –else statement

Use of brace brackets dictate the association rule for else statement. Else in the following code is linked
up with first if statement

if (totalMarks > 60)
 { if (total Marks > 70)

 printf(“passed with distinction\n”);
 }

 else
printf(“passed with first class\n”);

 3.2 IF - ELSE-IF STATEMENT
In real life , we need to evaluate , several conditions in sequence, called multi way decision making and
else if statements are very useful for this purpose. The syntax and example are shown below

 if (expression) : if (totalMarks >= 70)
 statement printf(“passed with distinction\n”);
else if (expression) else if (totalMarks >= 60)
 statement printf(“passed in first class\n”);
else if (expression) else if(totalMarks >= 50)
 statement printf(“passed with second class\n”);
else else
 statement printf(“unsuccessful \n”);

Example 3.1 tempcontrol.c . In this problem , we would consider the algorithm shown below
Read the temperature
If temperature < 20 o

Display “ Temperature is lukewarm. Switch on heater”.
Else if temperature < 40 o

Display “ switch heater to simmer mode”

C & Data Structures by Practice54

else if temperature is < 60 degrees
Display “ upper limit reached .switch off heater”

 // Listing for program tempcontrol.c
#include<stdio.h>
#include<conio.h> // console input /output for getch() and clrscr()
#define MAX 60
#define LUKEWARM 20
#define WARM 40
void main()
{ float temp ;

printf(“Enter <temperature of the heater>\n”);
scanf(“%f”,&temp);
if (temp < LUKEWARM)
 printf(“\n Temperature is lukewarm. Switch on heater\n”);
else if (temp < WARM)
 printf(“\nWater is warm. Switch heater to simmer mode\n”);
else
 printf(“\nWater is hot. Switch off the heater \n”);

} // end of main
/*
OUTPUT:
Enter <temperature of the heater>22
Water is warm. Switch heater to simmer mode*/

lÄí~áå=íÉãé

óÉë

áÑ=íÉãé=Y =OM

áÑ=íÉãé=Y =QM

åç

åç

ëí~íÉãÉåí
ëí~íÉãÉåí

Éñáí

ë í~íÉãÉåíë

óÉë

Fig. 3.3 Flow chart for If Else IF Statement

55Control Statements

 3.3 SWITCH AND CASE STATEMENTS
Switch statement evaluates an expression and depending on the numerical value of the evaluation
control is branched to corresponding block of statements. The syntax and example problem are shown
below.

switch (expression)
case constantexpression1 : statements1
case constantexpression2 ; staements2
default statements

Example 3.2 switch.c to show the usage of switch and case
//program to demonstrate the switch statement
#include<stdio.h>
void main()
{
 int choice;
 int num1,num2;
 printf(“1.Addition\n”);
 printf(“2.Substraction\n”);
 printf(“3.Multiplication\n”);
 printf(“4.Division\n”);
 printf(“5.Quit\n”);
 do

{ printf(“\nEnter your choice: “);
 scanf(“%d”,&choice);
 switch(choice)
 {
 case 1:printf(“\nEnter <num 1& num2>: “);

 scanf(“%d%d”,&num1,&num2);
 printf(“num1+num2=%d\n”,num1+num2);
 break;

 case 2:printf(“\nEnter <num 1& num2>: “);
 scanf(“%d%d”,&num1,&num2);
 printf(“num1-num2=%d\n”,num1-num2);
 break;

 case 3:printf(“\nEnter <num 1& num2>: “);
 scanf(“%d%d”,&num1,&num2);
 printf(“num1*num2=%d\n”,num1*num2);
 break;

 case 4:printf(“\nEnter <num 1& num2>: “);
 scanf(“%d%d”,&num1,&num2);
 printf(“num1/num2=%d\n”,num1/num2);
 break;

C & Data Structures by Practice56

 case 5:printf(“exiting from program\n”);
 exit(0);

 default: printf(“Invalid choice<enetr no between 1 and 5 only>\n”);
 } // end of switch
}while(choice!=5);

}//end of main
/*
OUTPUT:
1.Addition
2.Substraction
3.Multiplication
4.Division
5.Quit

Enter your choice: 3
Enter <num 1& num2>: 3 5
num1 * num2 = 15
Enter your choice: 5
*/
Note that switch statement directs flow to the block of statements depending on the integer constant
choice. Further it is necessary to separate blocks in a switch statement through break statement. Break
statement simply put breaks the nearest brace bracket block , in this case it is switch block brace
brackets. Also note that , the while loop continues till you enter choice of 5. It exits the program
through exit(0) statement

 3.4 CONTROL LOOPS

3.4.1 While Loop

While loop is written by a programmer , if he is not sure if the while block will be executed. A condition
is checked first. If it is true , the while block is executed. The syntax of while statement is

While (expression) //body of while contains a single line
Statement; // no brace brackets required

While(expression)
 { statement1;

statement2;
 }
while(1) // expression is always true
{ block of statements; // the loop is called for ever while loop
}

57Control Statements

få áíá~äáò~íáçå=ç Ñ=ÉñéêÉëëáçå

ÅçåÇáíáçå

kç

óÉë

píçé

_çÇó=ç Ñ=ïÜ áäÉ

Fig. 3.4 Control flow for while and for loops

Example 3.3 CheckLimit.c. In this program , we will use while loop to turn off the heater if upper cut
off temperature has reached. The algorithm is

Read the temperature
While temperature < upper cut off

Switch on the heater
Switch off the heater

// Listing for program checklimit.c
#include<stdio.h>
#include<conio.h> // console input /output for getch() and clrscr()
#define MAX 60
void main()
{ float temp ;

printf(“Enter <temperature of the heater>\n”);
scanf(“%f”,&temp);
while (temp<MAX)

printf(“\n Temperature is lukewarm. Switch on heater\n”);
printf(“\nWater is hot. Switch off the heater \n”);

} // end of main
/*
OUTPUT:
Enter <temperature of the heater>
Water is hot. Switch off the heater
*/
Example 3.4 sumwhile.c //Program to find sum of n numbers and their average using while loop.
#include<stdio.h>
#include<conio.h> // console input /output for getch() and clrscr()
void main()

C & Data Structures by Practice58

{ int n;
 int num ,sum = 0, avg=0;
 //initialize the while expression variable
 int count =1;
 // input N
 printf(“\n Enter value of <N>\n”);
 scanf(“%d”,&n);
 // control loop
 while (count <= n)
 { printf(“\n Enter value of %d number :”, count);

scanf(“%d”,&num);
sum+=num;
count++;

 }
 avg=sum/n;
 printf(“\n Sum of %d numbers = %d “,n,sum);
 printf(“\n Average of %d numbers = %d”,n,avg);
 getch();
} // end of main
/*
OUTPUT:
Enter value of <N>3
Enter value of 1 number : 1
Enter value of 2 number : 2
Enter value of 3 number : 3
Sum of 3 numbers = 6
Average of 3 numbers = 2
*/
3.4.2 Do-While Loop
The syntax is

Do
 {
 block of statements
 } while (expression);

 The block is executed first and the condition is checked . If true , the loop is executed , till the condition
becomes true. We will use do – while loop , when we know that the loop needs to be executed at least
one time . Whereas , while loop is used when we are not aware if loop needs to be executed or not.
Control flow is shown in Fig. 3.5.

59Control Statements

_çÇó=ç Ñ=aç=ïÜ áäÉ=iççé

kç

`çåÇ áíáçå

vÉë píçé

Fig. 3.5 Control flow for do-while loop

Example 3.5 sumdowhile.c /*Program to find sum of n numbers and their average using do-while
loop.*/
#include<stdio.h>
#include<conio.h> // console input /output for getch() and clrscr()
void main()
{
 int n;
 int num ,sum = 0, avg=0;
 //initialize the while expression variable
 int count =1;
 // input N
 printf(“\n Enter value of <N>\n”);
 scanf(“%d”,&n);
 // control loop
 do
 {

 printf(“\n Enter value of %d number :”, count);
 scanf(“%d”,&num);
 sum+=num;
 count++;

 }while (count <= n);
 avg=sum/n;
 printf(“\n Sum of %d numbers = %d”,n,sum);
 printf(“\n Average of %d numbers = %d”,n,avg);
 getch();
} // end of main
/*
OUTPUT:
Enter value of <N>3
Enter value of 1 number : 1
Enter value of 2 number : 2
Enter value of 3 number : 3
Sum of 3 numbers = 6
Average of 3 numbers = 2
*/

C & Data Structures by Practice60

3.4.3 For Loop

for loop , as control loop is used , when we know the exact number of times the loop needs to be
executed. The syntax of for loop is

 for (exp1 ; exp2 ; exp3)
 {

block of statements
 }

 where exp1 is initialization block
 exp2 is condition test block
 exp3 is alter initial value assigned to exp1

Forever for loop is shown below.
for (; ;)
 {
 statement;
 }

for loops can be nested. That means we can write for loop with in a for loop. In nested for loop , the
inner loop is executed for each value of outer loop. For exmple , inner loop is executed for i=0 and
value of j is varied from 0 final condition. Outer loop is executed for values of i varying from 0 to n-1.

The syntax is
for (i=0;i<n;i++)
 {
 for (j=0;j<n;j++)
 {

 statement
 }
 }

Example 3.6 sumfor.c . //A program to compute sum and average of given numbers using for loop.
#include<stdio.h>
#include<conio.h> // console input /output for getch() and clrscr()
void main()
{
 int n;
 int num ,sum = 0, avg=0;
 //initialize the while expression variable
 int count;
 // input n
 printf(“\n Enter value of <n>\n”);

61Control Statements

 scanf(“%d”,&n);
 // for control loop
 for(count=1; count<=n ; count++)
 {

 printf(“\n Enter value of %d number :”, count);
 scanf(“%d”,&num);
 sum+=num;

 }
 avg=sum/n;
 printf(“\n Sum of %d numbers = %d”,n,sum);
 printf(“\n Average of %d numbers = %d”,n,avg);
 getch();
} // end of main
/*
OUTPUT:
Enter value of <N>
3
Enter value of 1 number : 1
Enter value of 2 number : 2
Enter value of 3 number : 3
Sum of 3 numbers = 6
Average of 3 numbers = 2
*/

Control flow is shown in Fig.. 3.4. Note that the Fig. 3.4 also shows the control flow for while loop also.
We have also shown through the examples 3.5 and 3.6 that code also is same in both cases.

Example 3.7 nest.c . //A program to demonstrate nested for loop
#include<stdio.h>
#include<conio.h> // console input /output for getch() and clrscr()
void main()
 { int i , j ; // counters for outer and inner for loop
 for (i=15; i<20; i++) // outer loop
 {

printf(“\n Multiplication table for %d X %d”, i,j);
for (j=1; j<20 ; j++) // inner loop
{

printf(“\n %d X %d = %d “, i , j , i*j);
} // end of inner for loop
} // end of outer for loop

 } // end of main
 /*
 OUTPUT:
Multiplication table for 15 X 1 = 15

 2 = 30
 3...*/

C & Data Structures by Practice62

3.4.4 When to Use for or While or Do-while

for loop is best suited , when programmers have exact knowledge of initialization and final conditions
to be met.

 for (exp1 ; exp2 ; exp3)
 {

block of statements
 }

 where exp1 is initialization block
 exp2 is condition test block
 exp3 is alter initial value assigned to exp1

The above for loop is equivalent to following while loop. While loop, is used when programmer does
not know if the while block will be executed at all or not. In other words , in a situation , where we have
to check a condition and then only execute block , we will use while loop.

 exp1;
 while(exp2)
 { statement;
 exp2;
 }
Do – while loop , on the other hand is used when we know that block is to be executed at least once. In
other words , we have to execute the block and then check for a condition.

 3.5 BREAK AND CONTINUE
3.5.1 Break.Break statement is used to exit from the switch control or control loop. We can use break
statement to exit from for , while and do while, and switch control statements. You have already seen
use of break statement in Switch statement. Observe how break is used to come out of if statement
below
break.c //Program that demonstrates Break statement.
#include<stdio.h>
void main()
{

int count=0;
int sum,num;
int avg;
for (;;) // for ever for loop
{ if(count == 5)

{ printf(“\n reached upper limit of 5: breaking the for loop”);
 break;
}
else
{

63Control Statements

 printf(“\n Enter value of %d number :”, count);
 scanf(“%d”,&num);
 sum+=num;
 count++;
}

} // end of for
} // end of main
/*
OUTPUT:
Enter value of 0 number : 1
Enter value of 1 number : 2
Enter value of 2 number : 3
Enter value of 3 number : 4
Enter value of 4 number : 5
reached upper limit of 20: breaking the for loop*/

3.5.2 Continue Statement
Continue is used when we want to stop further processing of loop statements and start at the beginning
of the control loop. In the example shown below , we would like to add 10 points to all odd number
between 0 to 10 and skip adding to even numbers
continue.c
#include<stdio.h>
 void main()
 { int count=0;
 int sum;

 int avg;
 for (;;) // for ever for loop
 { if((count %2)== 0) // the number is even. % operator gives remainder
 { printf(“\n even number: breaking the for loop:%d “ count);
 continue; //control goes to here
 }
 else
 { count+=10; // means count = count + 10
 printf(“\n odd number : added 10%d”,count);

 }
 } // end of for
 } // end of main
 /*
OUTPUT:
even number: breaking the for loop:0
*/

C & Data Structures by Practice64

 3.6 GOTO STATEMENTS
Goto statement is rarely used due to fears that it would lead to unstructured programs. Goto statements
can be conditional and unconditional .The syntax is
 goto label // unconditional branch
goto.c
#include<stdio.h>
void main()
{

int num ,sum=0,count=0;
start:

printf(“\n Enter value of <number> number :”);
scanf(“%d”,&num);
sum+=num;
count++;
printf(“\n number: %d”,num);
if (count > 3)

goto stop1;
else

goto start;
stop1:

printf(“\n exiting the main program”);
} // end of main
/*
OUTPUT:
Enter value of <number> number : 1
number: 1
Enter value of <number> number : 2
number: 2
Enter value of <number> number : 3
number: 3
Enter value of <number> number : 4
number: 4
Enter value of <number> number : 5
number: 5
Enter value of <number> number : 6
number: 6
exiting the main program
*/

We do not recommend using of goto at all. It is always better to get used to while , do while and for
loops for achieving the same result, but using structured programming style.

65Control Statements

3.7 Exit function. You can force a program to stop what ever it is doing and return the control to
operating system by using exit() function. For this function you have to include stdlib.h in the include
section.

exit(0); // return after successful completion to operating system(os)
 exit(1); // return to os on being unsuccessful

OBJECTIVE QUESTIONS

1. Break statement takes the control to
a) goes out of the innermost loop that contains the break statement
b) to the beginning of the program
c) to the end of the program.
d) goes out from all the nested loop.

2. Continue statement takes the control to
a) to the bottom of the loop.
b) to the beginning of the loop.
c) to the next statement.
d) to the end of the program

3. exit() function returns control to Operating system TRUE/FALSE

4. Which of the following are true statements
a) goto can be used in for loop to come out of the loop
b) continue takes you to beginning of the loop
c) continue can be used in switch statement
d) break can be used in switch statement
a) Only statement (I) is correct b) Only statement (II) is correct
c) Both statements b & c are’ correct d) only d is correct

5. The following expression
pay= (bp>=1000) ? bp : 1500;
is equivalent to

 a) if (bp==1000) b) if (bp<1000)
pay = bp; pay = bp;

 else else
 pay = 1500; pay = 1500
 c) if (bp>=1000) d) if (bp>1000)

pay = bp; pay = bp;
 else else

 pay = 1500; pay = 1500

C & Data Structures by Practice66

6. Following code converts c to
char c =’A’

 c=c+’a’-65
a) to upper case b) to lower case c) to a number d) to character c

7. To check the equality of two variables a and b , in C language
a) if (a=b) b) if (a equalto(b)) c) if (a==b) d)if((a,b)=0)

8 Do while statement executes body at least once prior to checking the conditions. True/False

9 What will be the out put

int i =0;
int k=1
do
{

printf(“%d” , ++i);
 } while (i<=k)

a) 1 b)2 c) 3 d) 4
10 What is the output of the following code:

int x=10;
while(1)
{

if(m<1)
break;

 m=m-8;
 }

printf(“%d”,m);
a) 0 b) 1 c) 2 d) 10

REVIEW QUESTIONS

1. Distinguish the switch and if else statements.

2. When do you use for statement and while statements. State the situation when for statement is
better than while statement.

3. Explain the differences of do while and while statements.

4. Why goto statement is not preferred?

5. Explain the continue and break statement with examples

67Control Statements

SOLVED PROBLEMS

1. sum.c //Write a C program to find out the sum of the digits of a number
#include<stdio.h>
#include<conio.h>
// function prototype declarations
void sumdigits(int n); /*function definition*/
void main()
{

int x,s;
clrscr();
printf(“enter a number\n”);
scanf(“%d”,&x); /*input number from the user*/
sumdigits(x); /*function call*/
getch();

} /*end of main*/
void sumdigits(int n) /*function definition*/
{

int r,sum=0;
while(n) /*when n is not 0*/
{

r=n%10;
sum=sum+r;
n=n/10;

}
printf(“%d\n”,sum);

} /*end of function sumdigits*/
/*
OUTPUT:
enter a number
123
6
*/
2. lupper.c Write a C program for converting a line of lower case text to upper case*/

/*Program for converting a line of lower case text to upper case*/
#include<stdio.h>
#include<conio.h>
#define EOL ‘\n’
//function prototype
void LU(char text[80]);

C & Data Structures by Practice68

void main()
{

char letter[80];
clrscr();
LU(letter); /*function call*/
getch();

} /*end of main*/
void LU(char text[80])
{

int tag,count=0;
printf(“enter the text\n”);
while((text[count]=getchar())!=EOL) /*enter a line full of text*/
++count;
tag=count;
count=0;
printf(“the text in upper case is\n”);
while(count<tag) /*loop begins*/
{

putchar(toupper(text[count])); /*converting to uppercase and printing*/
++count;

} /*end of loop*/

} /*end of function LU*/
/*
OUTPUT:
enter the text
hello
the text in upper case is
HELLO
*/
3. reverse.c Write a C program to find the reverse of a given number*/
/*Program to find the reverse of a given number*/
#include<stdio.h>
#include<conio.h>
void REVERSE(int n); /*function definition*/
void main()
{

int x;
clrscr();
printf(“enter a number\n”);
scanf(“%d”,&x); /*input from the user*/
REVERSE(x); /*function call*/

69Control Statements

getch();
} /*end of main*/
void REVERSE(int n) /*function definition*/
{

int r=0,s=0;
while(n>0) /*when n is greater than 0*/
{

r=n%10;
s=s*10+r;
n=n/10;

}
printf(“the reverse of the given number is:%d\n”,s);

} /*end of function REVERSE*/
/*
OUTPUT:
enter a number
1234
the reverse of the given number is: 4321
*/
4. format1.c /* Write a program to print the following figure:

 1
1 2 1

 1 2 3 2 1
 1 2 3 4 3 2 1
 1 2 3 4 5 4 3 2 1
 */
#include<stdio.h>
#include<conio.h>
void figure2(int x); /*function definition*/
void main()
{

int n;
clrscr();
printf(“enter n value\n”); /*how many lines*/
scanf(“%d”,&n);
figure2(n); /*function call*/
getch();

} /*end of main*/
void figure2(int x) /*function definition*/
{

int i,j,l;
l=x-1;
for(i=1;i<=x;i++,l—) /*outer loop begins*/
{

C & Data Structures by Practice70

for(j=0;j<l;j++)
printf(“ “);
for(j=1;j<=i;j++)
printf(“%d”,j);
for(j=i-1;j;j—)
printf(“%d”,j);
printf(“\n”); /*print in next line*/

} /*end of outer loop*/
} /*end of function figure2*/
/*
OUTPUT:
enter n value
5

 1
1 2 1

 1 2 3 2 1
 1 2 3 4 3 2 1
 1 2 3 4 5 4 3 2 1
 */
5. Write a C program to find the factorial of a given number
//fact.c
#include<stdio.h>
int fact(int n); /*function definition*/
void main()
{ int x,ans;

printf(“enter a number”);
scanf(“%d”,&x); /*input from the user*/
ans=fact(x); /*function call*/
printf(“\n factorial of a given Number : %d = %d \n”, x,ans);

}
int fact(int a) /*function definition*/
{ int fact=1;

if (a==0 || a==1)
 return 1;
 else
 {
 while (a > 1)

 { fact=fact*a; //1*5*4*3*2*1
 a—;
 }
 }
}
/*output
enter a number5
 factorial of a given Number : 5 = 120*/

71Control Statements

6. Write a c program to generate Fibonacci series with out using recursion
/*Program to generate the Fibonacci series*/
//fibsrs.c
#include<stdio.h>
void fib(int x);/*function definition*/
void main()
{ int n;

printf(“enter <no of terms n>”);
scanf(“%d”,&n); /*input from the user*/
fib(n); /*function call*/

} /*end of main*/
void fib(int x) /*function definition*/
{ int a=0,b=1,i=0,c;

printf(“%d %d”,a,b);
i+=2; // increment i by 2 because a & b
while(i<x) /*loop begins,runs till i<x*/
{ c=a+b;

printf(“ %d”,c);
a=b;
b=c;
i++;

}/*end of while loop*/
} /*end of function fib*/
/*
enter n:7
0 1 1 2 3 5 8
*/
7. Write a program to convert a given string from lowercase to uppercase.
// strupp.c
#include<stdio.h>
#include<conio.h>
#include<ctype.h>
void lowup(char cha[20]); /*function definition*/
void main()
{ char ch[20];

clrscr();
printf(“enter a string\n”);
scanf(“%s”,&ch); /*input string from the user*/
lowup(ch); /*function call*/
getch();

} /*end of main*/
void lowup(char cha[20]) /*function definition*/
{ int i;

char c;

C & Data Structures by Practice72

for(i=0;cha[i]!=’\0';i++) /*loop begins*/
{ if(islower(cha[i])) /*if the char is in lowercase*/

c=toupper(cha[i]); /*convert to uppercase*/
else
c=cha[i];
printf(“%c”,c); /*display the char*/

} /*end of loop*/
} /*end of function lowup*/
/*
OUTPUT:
enter a string:
string
STRING*/

8. Write a program to calculate the value of the series
x+(x*x*x)/3!+(x*x*x*x*x)/5!+....7th digit accuracy*/

// series1.c
#include<stdio.h>
#include<conio.h>
void series1(int m,int y);/*function definition*/
void main()
{ int n,x;

clrscr();
printf(“enter n and x values\n”);
scanf(“%d%d”,&n,&x); /*input from the user*/
series1(n,x); /*function call*/
getch();

} /*end of main*/
void series1(int m,int y) /*function definition*/
{ int i,j,p;

double s,t;
s=y;
t=y;
for(i=3;i<=m;i=i+2) /*loop begins*/
{

p=1;
for(j=i;j>0;j—)
p=p*j;
t=(t*y*y)/p;
s=s+t;

} /*loop ends*/
printf(“sum=%12.7lf”,s); /*printing upto 7th digit accuracy*/

} /*end of function series1*/
/*

73Control Statements

OUTPUT:
enter n and x values
 5 2
 sum = 3.3777778 */

9. Write a program to calculate the value of the series
1+(x^2)/2!+(x^4)/4!+...upto 10 terms

// series2.c
#include<stdio.h>
#include<conio.h>
void series2(int m,int y); /*function definition*/
void main()
{

int n,x;
clrscr();
printf(“enter n and x values\n”);
scanf(“%d%d”,&n,&x); /*input from the user*/
series2(n,x); /*function call*/
getch();

} /*end of main*/
void series2(int m,int y) /*function definition*/
{ int i,j,p;

double s=1,t;
for(i=2;i<=m;i=i+2) /*loop begins*/
{ t = (t * y * y)/ ((i)* (i–i));

s=s+t;
} /*loop ends*/
printf(“sum=%lf”,s);

} /*end of function series2*/
/*
OUTPUT:
enter n and x value:
5 2
sum=3.166667*/

10. Write a program to produce the pyramid
 1

 1 1 1
 1 1 1 1 1

//pyramid.c

C & Data Structures by Practice74

#include<stdio.h>
//function prototype declarations
void figure1(int x);
void main()
{ int n;

printf(“enter n value\n”);
scanf(“%d”,&n); /*input from the user asking how many lines*/
figure1(n); /*function call*/
getch();

} /*end of main*/
void figure1(int x) /*function definition*/
 { int i,j;

for(i=1;i<=x;i++) /*loop 1 begins*/
{ for(j=0;j<x-i;j++) /*loop 2 begins*/

printf(“ “);
for(j=0;j<(2*i-1);j++) /*loop 3 begins*/
printf(“1”);
printf(“\n”); /*print in next line*/

} /*end of loop 1*/
}/*end of function figure1*/
/*OUTPUT:
enter n value: 3
 1

 1 1 1
 1 1 1 1 1*/

/*Program to print the following figure:
 1
 1 2 1
 1 2 3 2 1
 1 2 3 4 3 2 1
 1 2 3 4 5 4 3 2 1*/

11. Write a program to produce the figure shown below
//numpid.c
#include<stdio.h>
void figure2(int x);//function prototype
void main()
{ int n;

printf(“enter n value\n”); /*how many lines*/
scanf(“%d”,&n);
figure2(n); /*function call*/
getch();

} /*end of main*/

75Control Statements

void figure2(int x) /*function definition*/
{ int i,j,l;

l=x-1;
for(i=1;i<=x;i++,l—) /*outer loop begins*/
{ for(j=0;j<l;j++)

printf(“ “);
for(j=1;j<=i;j++)
printf(“%d”,j);
for(j=i-1;j;j—)
printf(“%d”,j);
printf(“\n”); /*print in next line*/

} /*end of outer loop*/
} /*end of function figure2*/
/*
OUTPUT:
enter n value:5

 1
1 2 1

 1 2 3 2 1
 1 2 3 4 3 2 1
 1 2 3 4 5 4 3 2 1
*/

ASSIGNMENT PROBLEMS

1. Candidates have to score 90 or above in the IQ test to be considered eligible for taking further
tests. All the candidates who do not clear the IQ test are sent reject letters and others are sent call
letters for further test. Represent the logic for automating this task.

2. Write C code for following series

a) 1+3+5+7 + …………………..+n
b) 1+x2+x4+x6 +…………….. n terms
c) (1-x)n = 1 + nx + ((n(n+1)x2)/ 1.2) ((n(n+1)(n+2)x2)/ 1.2.3)

3 write a program for computing

a) cos(x) = 1 – (x2/2!) + (x4/4!) - (x6/6!) + ……………
b) sin(x) = x – (x3/3!) + (x5/5!) - (x7/7!) + ……………
b) ex = 1 + (x/1!) + (x2/2!) + (x3/3!)+ ……………….

C & Data Structures by Practice76

4. Write the following code using switch statement
if (color == ‘r’)

printf(“\n color is red\n”);
 else

if (color ==’b’)
 printf(“\n color is blue”);
else
 printf(“\n colorless\n”);

5. Write a program to compute electricity bill to be paid by a consumer as per following tariff
upto 100 units 2.30 /unit
up to 400 Units 2.70 / unit

 >400 and <1000 4.50 / unit
 > 1000 units 6.00 / unit

6. Write a program to compute Income Tax to be paid by a citizen as per following tax regime. Take
the gross salary from the individual and compute the tax payable.

Upto 100000 NIL
 > 100000 and < 1 60 000 10% of the amount exceeding 100000
 > 160000 and < 250 000 20% of the amount exceeding 160000
 > 250 000 30% of the amount exceeding 250000
 add sur tax @ of 10% on the tax payable.

7. Write a program to display the ascii table.

8. Write a program to read a line from the keyboard and print the line using a suitable encryption.
Simple encryption can be a substitution with next character A with B , a with b , and z with a and
so on. De crypt and display the original message

Solutions to Objective Questions
1) a 2) b 3) true 4) c 5) c
6) b 7) c 8) true 9) b 10) c

4FUNCTIONS AND STORAGE
CLASSES

CHAPTER

 4.1 WHY USE FUNCTIONS ?
Its common knowledge that experts, who are dedicated to a particular job, will perform the job better
and faster. We approach architect for making functional and aesthetic housing. Similarly we handover
control to doctors to take care of our health. In C language, we hand over jobs to functions specially
written for this purpose.

Idea is to decompose main problem into smaller modules and write functions to implement the
modules. The main function in C Language is called : main(). Interestingly, it is also a function, albeit,
a main function. Main() function calls other functions. Calling function is one which calls a called
function. The function prototype is declared before, void main (), in the global area, so that it is accessible
by all other functions. The syntax is :

 ReturnType Function name (Argument List) ; // note the
semicolon

int FindMax (int a, int b, int c);

 void main () calls the function FindMax() by supplying the arguments
 and receives the result through return type.

ans = FindMax (a, b, c) ; // a,b,c and ans are all integer data types

 Function Definition is given after main program as

int FindMax (int a, int b, int c) // note the absence of semicolon
 {
 // Function Code here
 }

Example 4.1 swap.c. A program to demonstrate concepts of functions so far discussed and also bring
out concept of pass by value.

C & Data Structures by Practice78

#include<stdio.h>
#include<conio.h>
// function prototype declarations
void Swap (float x, float y); // to interchange values
void main() //Calling Function
 {
 float x= 100.00; // x & y are local to main()
 float y = 1000.00;
 printf(“\n Before calling Swap function <x and y > %f : %f “, x,y);
 // call the function and pass arguments x & y
 Swap(x,y); //Called Function
 printf(“\n After return from Swap <x and y > %f : %f “, x, y);
 getch();
 }//end of main
// function definition
void Swap (float x, float y)
 { float temp ; // temp is local to Swap function
 temp = x; // store x in temp
 x=y; // store y in x
 y=temp; // store temp in y
 printf(“\n Inside Swap programme <x and y > %f : %f “, x, y);
 } // end of Swap

/*
OUTPUT
Before calling Swap function <x and y > 100.00 : 1000.00
Inside Swap programme <x and y > 1000.00 : 100.00
After return from Swap <x and y > 100.00 : 1000.00
*/
Observe the output. While the function Swap has done its job of interchanging the values of x and y, as shown
by printf statement inside Swap, in the the main program, the values did not interchange. What does the mean
? Answer lies in the fact that variable values and operations you do on them are local to block i.e local to
function Swap. It has no connection with variables x and y belonging to main() function.

Indeed, main() function passes arguments by copying these values in to stack area of the function Swap.
Its like passing a Xeroxed document and retaining the original. Obviously, the changes you make on
Xerox copy will not be reflected on the original.

We have shown function handling by C language in Fig. 4.1. While we will
handle stack in detail in under data structures, understand that stack is Last in
first out(LIFO) data structure. As an example consider, a student
places(pushes) a book on the table first. He follows(pushes) it up with another
book and an apple. Last item in is apple. So when the student tries to take out
an item, the first one to come out (pop) is apple. This is LIFO structure. It has
great many uses in computer science. For example, compilers use Stack data
structure for evaluation of expressions written by programmers.

79Functions and Storage Classes

How are functions handled in C. We would like to give an example. Suppose a carpenter carrying out
some job using the chisel. Now chisel has turned little blunt. What will the carpenter do? Simply, he
marks and makes a note of his current work area or spot and proceeds to area where grinding stone and
machines are situated. He sharpens his chisel and on completion, returns to his original spot and
resumes his carpentry work. Surprisingly C also handles functions in the same manner
Store return address, copy arguments into function areas, branch to function,return to main and
resume execution of main function

 4.2 COMMUNICATION BETWEEN FUNCTIONS
We have seen how arguments are passed between calling and called function using stack structure. In
the example 4.1, the function Swap did not return any value to main function. Now let us see, how a
function returns a value

Example 4.2 comm.c A program to demonstrate returning of a value to main function
#include<stdio.h>
#include<conio.h>
// function prototype declarations

Fig. 4.1 Function handling in C language

KKKKKKKKKKKKKKKKKKKKKK

KKKKKKKKKKKKKKKKKKKKKK

íÉãé

v=Z =NMMMKMM

u=Z =NMMKMM

oÉíìêå=~ÇÇêÉëë

~ÇÇêÉëë

OMOQ

QMQM
v=Z =NMMMKMM

u=Z =NMMKMM

OMOP

OMOO

OMON

OMOM

OMNV

OMNU

OMNT

pï~é=ëí~Åâ

j~áå=ëí~Åâ

pí~Åâ ~ÇÇêÉëë

Main stores x and y at 2017 and
2018 addresses

When Swap is encountered , the ad-
dress of next instruction, say 4040
from code area is pushed onto stack
area i.e at 2019.

Arguments x & y of Swap function
are pushed onto stack by main()
function at address 2020 and 2021.

Swap allocates address 2022 to local
variable temp.

Swap ,interchanges values of x and
y at address 2020 & 2021. But note
that x&y of main at 2017 &2018 are
untouched. Printf ,in side Swap
shows changed values.

When Swap encounters return or
closing }, the control picks up return
address and returns to main
function. Here you will find x & y
at address 2017 & 2018 unaltered

C & Data Structures by Practice80

float FindArea (float x, float y);
void main()
 { float ans;
 float x =200, y =100;
 ans = FindArea(x,y);
 printf(“\n area =%f”, ans);
 }
 // function definition
 float FindArea(float x, float y)
 {
 float ans;
 ans=x*y;
 return ans;
}// end of FindArea
/*
Output:
 area =20000.000000*/

Note that x & y are copied on to FindArea stack area. FindArea computes area at add 2023. When
return area is encounterd FindArea copies area on to ans of main () function. Further note that a
function can return only one value to main function. In chapter 6 on pointers, we will learn more
elegant methods of communication of information between function i.e passing of pointers and return
of pointers from and to main functions.

 4.3 CALL BY VALUE
Mode of data transfer between calling function and called function, by copying variables listed as
arguments into called function stack area, and subsequently, returning the value by called function to
calling function by copying the result into stack area of the main function is called Call by value. Note
that as copying of the variables, both for forward transfer and return transactions are involved, it is
efficient only if values to be transfered are small in number and basic data type. For group and user
define data structures like structures and unions etc, call by value method is not used. Instead, we will
employ call by reference method to move large data items.

 4.4 CALL BY REFERENCE
For large data items occupying large memory space like arrays, structures, and union, over heads like
memory and access times etc become very high. Hence, we do not pass values as in call by value,
instead, we pass the address to the function. Note that function once receives a data item by reference,
it acts on data item and the changes made to the data item also reflects on the calling function. This is
like passing address of original document and not a Xerox copy. Therefore, changes made on the
original document applies owner of the document as well. Note that arrays are always forwarded by
call by reference. Study the following example.

81Functions and Storage Classes

Example 4.3. arraycall.c. A program to demonstrate passing of array by reference. In this example
we will pass the array of integers by reference to a function called intsort, which sorts the array in the
ascending order.
#include<stdio.h>
#include<conio.h>
// function prototype declarations
void IntSort(int n, int a[]); // recives number of items & array
void main()
{

int i,n=10;// number of items
int a[] ={ 67,87,56,23,100,19,789,117,6,1}; // array with 10 elements
printf(“\n Given input array”);
for (i=0;i<n;i++)
printf(“%d \t “, a[i]);
// we are passing array a. Note that array name is ‘a’. Name is address.
IntSort(n,a);
printf(“\n Sorted array \n”);
for (i=0;i<n;i++)

printf(“%d\t”, a[i]);
}//end of main
// function definition
void IntSort(int n, int a[])
{

int i,j, temp; // i for outer loop j for inner loop and temp for swapping
for (i=0; i< n-1; i++) // last value need not be sorted
{
// find the smallest of remaining numbers and exchange it with

for (j=i+1; j< n; j++)
{

if (a[j] < a[i])
{ // swap

temp=a[i];
a[i]=a[j];
a[j]=temp;

}
}

}
}
/*
Output:
 Given input array....
67 87 56 23 100 19 789 117 6 1
 Sorted array.....

C & Data Structures by Practice82

1 6 19 23 56 67 87 100 117 789
*/
As array is a data structure comprising several data types, compiler passes it as reference. Note that we
have called IntSort(n,a); a means name of the array. Name means the address of the array. In effect we
have given the address of the array to IntSort function. The algorithm we have used for sorting integers
is simple, though not very efficient.

In pass 1 , i=0, compare n-1 balance items with j as index, find out if a[j] < a[i], if yes exchange with a[i].
This ensures that at the end of pass 1, the smallest number bubbles to the top of the array.

In pass2, start the same procedure but with i = 1; Let 2 nd smallest number be swapped to 2nd position

Continue till all elements are exhausted. The algorithm requires a total of n-1 passes to completely sort
the given list

We will learn more about call by reference through usage of pointers.

 4.5 RECURSION
Recursion is an advanced feature supported by C Language. Recursion means a function calling it self.
Consider the problem of finding a factorial of a number. In the example we can clearly see that Fact(5)
is calling Fact(4) and so on.

Fact(5) = 5 x 4 x 3 x 2 x 1
= 5 x Fact(4)
= 5 x 4 x Fact(3)
= 5 x 4 x 3x Fact(2)
= 5 x 4 x 3x 2 x Fact(1)
= 5 x 4 x 3x 2 x 1 x Fact(0)
= 5 x 4 x 3x 2 x 1 (Fact(0) =1)

Example 4.4 factrecur.c A program for finding factorial of a number using recursion feature.
#include<stdio.h>
// function prototype
int fact(int a);
void main()
{ int x,ans;

printf(“enter a number:\n”);
scanf(“%d”,&x); /*input from the user*/
ans=fact(x); /*function call*/

83Functions and Storage Classes

printf(“factorial=%d”,ans);
getch();

} /*end of main*/
int fact(int a) /*function definition*/
{ int ans;

if(a<=0)
 return(1); // fact(0) = 1 by definition
else
 ans =a*fact(a-1); /*funtion call with recursion*/
return(ans); /*returns the value of fact to main*/

} /*end of function fact*/
/*
Output:
enter a number:7
factorial=5040
*/
We have also used non recurring technique in chapter 3. Then which one we should use recursion
or control loop. Recursion is a powerful feature and if it is programmed correctly, would lead to
elegant and less code. But otherwise we can also achieve the same result by using any of the control
loops.

 4.6 STORAGE CLASSES IN C LANGUAGE
You are already familiar with intrinsic or basic data types like int, char, and float etc and allowable
ranges and operations that can be performed on them. We have also studied that variables are
declared and assigned memory locations. The manner in which memory is allocated and accessed
depends on the type of storage class.Now we will study how these variables are allocated memory
and accessed.

The variable are allocated required space either in memory or registers. Storage class determines

location : Where in memory or in CPU registers ?
initial values : What are the initial and default values? For example are they 0s or garbage

values
scope : Which all functions can have access ?
life of variables : What is the life of variables ? Is it till the end of function, in which they are

defined or is it till the end of main() function or is it that they are available
even after end of main () function.

C & Data Structures by Practice84

4.6.1 Memory Organization and Mapping of C Language

Memory can be broadly divided into data area or code area also called data segement and code segment.
Based on the requirements of access times, scope, and life of variables, the memory is divided in to
global, heap, code area, stack and static area as shown in Table 4.5

Table 4.5 Memory organization of C language

Global Variables: These are declarations such as include sections, define statements, function prototype
declaration, and declarations of structures and unions etc, have scope that extends to all functions. It
means, any variable declared in global section can be accessed by all functions. This section appears
before main () function.

Code Area : All the functions and their code is stored here.

Stack Area : All the variable declared in a function are automatically allocated space in stack area of the
memory. The scope of the variable is local. It means that a variable declared in a function, is accessible
only within the function. Further the life of variables declared within the function is life of the function
itself i.e within the brace brackets of the function. Hence these variables are called local variables or
automatic or auto variable. Consider the example given in Table 4.6 for local or auto variables.

GLOBAL: Include section
Function declarations
Structures and global variables

Heap Memory: Access to heap memory
is only through pointers i.e through
malloc() or calloc() unctions

CODE AREA: The C code, Functions etc
are stored in this section

STACK VARIABLES
All variables you declare are
stores on STACK

STATIC VARIABLES

All declarations & definitions are
accessible to all the functions.

Memory remaining after allocating space
to global,code , and stack/static variables

Code for all functions is stored here

Life of variable is till life of function in
which it is declared. called local variables.

Life of static variable is till of main ()
.Accessible to all Fns

85Functions and Storage Classes

Static Variables : In several situations, you will need accessibility of variables declared in a function
for all function, we will declare such variables as static. For example

ëí~íáÅ

ëíçê~ÖÉ==íóéÉ Ç~í~íóéÉ î~êá~ÄäÉ

áå í ñ X

Table 4.6 Local or stack auto variables

 void main() float FindArea(float x , float y)
{ { static int times=0;

float x =100, y=200,z; float ans;
float a[]= { 10.0,20.0,30.0}; ans=x*y;
…………… return ans;
z=FindArea(x,y); }// end of FindArea
 printf(“\n area =” , z);

} // end of main

 x , y , z ,and array a are local to main() ans is local to FindArea()
 They are stored on stack area return ans ; statement copies ans
 x & y are passed as arguments to FindArea() in to z belonging to main()
 FindArea copies the answer onto z Z is printed as output
 Life of variables is life of void main()

Variable declared as static, are stored in contiguous memory locations. Only special feature of static
area is that the variable in this static area are not erased, even if function terminates. For example, we
have declared, times as static int, to keep track of number of times FindArea is called by main() function.
We have also initialized times = 0; It is incremented when the first time function is called. Next time,
when FindArea() is called it is incremented by one to 2.

Heap Memory or Free Space: After allocating mandatory spaces for all the above storage classes, the
memory still free, is called heap memory or free space. This is dynamic memory available to programmer
for requirements of memory at run time. But access to this space is available only through pointers.
Malloc() and calloc() and free() are commands that are used for allocating and freeing space from heap
memory. We will study these aspects in chapter 6 on pointers.

Now we are ready to discuss the storage types in the following section.

4.6.2 Types of Storage Classes
 storage classes supported by C language is shown in Table 4.7

Table 4.7 Storage classes with their location, scope and life span

Storage class Location Scope Life
a) Automatic or auto stack local within the block { }

or stack storage
b) Register storage registers local within the block { }

C & Data Structures by Practice86

c) Static storage static local within the block { }
value stays even after
termination of function.

d) External global entire When all functions need
before main() program the value declare it as

external.Tillmain ()

Note that while static global and external declarations have reach to all functions there is one vital difference.
Static global declarations and definitions are available only throu a single main() function. Whereas,
declarations and definitions using extern are available even to programs written separately with different
file names but compiled and linked with main() program. Example will make the concepts clear.

Example 4. 5 stackstatic.c A program to demonstrate usage of static and stack(auto) variable..
#include<stdio.h>
#include<conio.h>
// function prototype declarations
float FindArea (float x, float y);
void main()
 {
 int i;

float x =200, y =100, area=0,ans;
 // call function FindArea 10 times
 for (i=0;i<10;i++)
 { ans = FindArea(x++,y++);
 printf(“\n area =%5.2f”, ans);
 }
 printf(“\n Address of variable ans in the main function : %x”, &ans);

 }// end of main
// function definition
float FindArea(float x, float y)
{ static int times=0; // static variable to keep track of number of times function is calles.
 float ans;
 ans=x*y;
 times++;
 printf(“\n number of times we have called findArea function = %d”,times);
 if (times ==10)
 printf(“\n Address of variable ans in the FindArea function : %x”, &ans);
 return ans;
}// end of FindArea
/*output

 number of times we have called findArea function = 1
 area =20000.00
 number of times we have called findArea function = 2

87Functions and Storage Classes

 area =20301.00
 number of times we have called findArea function = 3
 area =20604.00
 number of times we have called findArea function = 4
 area =20909.00
 number of times we have called findArea function = 5
 area =21216.00
 number of times we have called findArea function = 6
 area =21525.00
 number of times we have called findArea function = 7
 area =21836.00
 number of times we have called findArea function = 8
 area =22149.00
 number of times we have called findArea function = 9
 area =22464.00
 number of times we have called findArea function = 10
 Address of variable ans in the FindArea function : 12ff04
 area =22781.00
 Address of variable ans in the main function : 12ff6c
 */

Example 4.6 reg.c. A program to demonstrate usage of register storage class usage.
Note that registers of CPU, resident on the processor chip, exact number depends on the hardware of
the processor is considered as the primary memory and hence enjoy fastest access times. However,
being limited memory, they have to be used sparingly. For example variable which are most frequently
used by CPU can be declared as register variables thus saving access times. In the following example,
we would use register memory to store counter of control loop, square and square root of a number.

//reg.c
#include<stdio.h>
void main()
{
 register counter,square,sqroot;
 for(counter=1;counter <=10; counter ++)
 { square= counter* counter;

 printf(“\nnumber : %d : square : %d “, counter, square);
 }
}
/*
Output:
number : 1 : square : 1
number : 2 : square : 4
number : 3 : square : 9
number : 4 : square : 16

C & Data Structures by Practice88

number : 5 : square : 25
number : 6 : square : 36
number : 7 : square : 49
number : 8 : square : 64
number : 9 : square : 81
number : 10 : square : 100
*/

Example 4.7 extern.c A program to demonstrate usage of extern variable usage.
Variable declared out side void main() function comes under external storage class.
#include<stdio.h>
#include<conio.h>
// external function
void FindArea();
float x=10;
float y=10;
float area;
void main()
 { extern float area;
 extern float x;
 extern float y;
 area=0;
 printf(“\n area before calling FindArea %f”,area);
 FindArea ();
 printf(“\n area after return from FindArea %f”,area);
 getch();
 }// end of main

// fn declaration
void FindArea()
 {
 extern float x;
 extern float y;
 extern float area;
 area = x*y;
 printf(“\n area inside FindArea %f”,area);
}
/*
Output:
 area before calling FindArea 0.000000
 area inside FindArea 100.000000
 area after return from FindArea 100.000000
*/

89Functions and Storage Classes

Note that though, FindArea did not return the value of the area, the main program has shown the
correct value of area. Thus, we can use external declaration for avoiding passing of variable to and
from functions. We can also use extern declarations and definitions to link variables declared in two
different files. We will attempt to demonstrate the concept through next example.

Example 4.8 externfile.c A program to demonstrate usage of external program stored in another
file.Write C code for void FindArea() and save it as findarea.h in the current directory.
#include<stdio.h>
void FindArea()
 {
 extern float x;
 extern float y;
 extern float area;
 area = x*y;
 printf(“\n area inside FindArea %f”,area);
}

Write C code for void main () and include it along with other include statements as shown below
#include<stdio.h>
#include<conio.h>
#include”findarea.h” // findarea.h is stored in the current working directory
 // external function
void FindArea();
float x=10;
float y=10;
float area;
void main()
 { extern float area;
 extern float x;
 extern float y;
 area=0;
 printf(“\n area before calling FindArea %f”,area);
 FindArea ();
 printf(“\n area after return from FindArea %f”,area);
 getch();
 }// end of main
Note that you can use #include<findarea.h> if you copy the findarea.h into directory c:\tc\include
/*
Output:
 area before calling FindArea 0.000000
 area inside FindArea 100.000000
 area after return from FindArea 100.000000
*/

C & Data Structures by Practice90

 4.7 HEADER FILES
ANSI standards provided flowing standard header files.

 stdio.h : facilitates input output statements.
 ctype.h : contains functions that would facilitate manipulation of character data
 type. The functions supported are :
 isalnum() : Checks whether a character is alphanumeric (A-Z, a-z, 0-9)
 isalpha() : Checks whether a character is alphabetic
 islower() is upper().Test if char is lower or upper respectively.
 tolower() and toupper() : converts to lower and upper cases.
 math.h : Contains library functions. Note that x can be float or double. C
 language does not support expression of type x ^a. We need to use
 pow(x,a).
 sqrt(x) : determines square root of x
 pow(,x,a) : computes x^a
 exp(x) : computes e^x
 sin(x) and cos(x): computes sin and cosine
 log(x) : computes natural log
 log10(x) : computes log to base 10
 stdlib.h

abs(x) : computes absolute value of integer x
atof(s) : converts a string s to a double
atoi(s) : converts to integer
malloc() : allocates memory and returns a pointer to the location.
calloc() : same as malloc() but initializes the memory with 0s.
free(x) : frees heap memory space pointed by x
rand() : generates a random number.

 4.8 C PREPROCESSOR
The preprocessor does some house keeping function before submitting the source code to the C
compiler. The jobs it performs are:

a) inclusion of all include section files. For example it fetches and appends stdio.h from tc\include
directory and includes in source file.

b) Macro expansion. Actually pre processor carries out substitution for declarations given in
Macro statement. For example in the statement #define PI 3.14159, preprocessor searches for
occurrence of symbol PI and replace it with 3.141519.

c) Conditional inclusion. To prevent, inclusion second and multiple number of times, we can
employ conditional inclusion.

d) String Replacements

91Functions and Storage Classes

The standard directives available in C Language are:

#include include text from the specified file
#define define a macro
#undefine indefine a macro
#if test if a condition holds at compile time
#endif end of if (conditional preprocessor)
#elif if-else-if for multiple paths at compilation time
#line provides line number

In chapter 1, we have already used #define PI 3.14159 macro and calculated areas. You have also used
: #include<stdio.h> type of inclusion macros. In this section, we will use other type of macros.

4.8.1 Macro Expansion
Example 4.9 macro1.c
#include<stdio.h>
#define GETDATA printf(“\n Enter the value: “);
void main()
{
int x, y;
GETDATA;
scanf(“%d”,&x);
GETDATA;
scanf(“%d”,&y);
printf(“\n values enetered are %d %d”,x,y);
}
/*
Output:
Enter the value: 23
Enter the value: 34
Values enetered are 23 34
*/
Preprocessor directive like #define GETDATA printf(“\n Enter the value: ”); will simply substitutes all
the occurrences of GETDATA with printf(“\n Enter the value: ”);

4.8.2 Macro Definition with Arguments. The general syntax of macro with arguments is
#define macro-name(arg1,arg2,arg3,………..argn). Examples are shown below

Example 4.10 macro2.c. A program to demonstrate the usage of preprocessor directives.

C & Data Structures by Practice92

#include<stdio.h>
#include<conio.h>
// substitution & macro definition macros
#define GETDATA printf(“\n Enter the value < number>”);
#define WRITEDATA(ans) printf(“\n answer=%d”,ans);
#define SUM(a,b) ((a)+(b))
#define PRODUCT(a,b) ((a)*(b))
#define MIN(a,b) ((a)>(b)?(a): (b))
void main()
{

int x, y, ans;
GETDATA;
scanf(“%d”,&x);
GETDATA;
scanf(“%d”,&y);
ans=PRODUCT(x,y);
printf(“\n product of numbers is “);
WRITEDATA(ans);

ans=SUM(x,y);
printf(“\n sum of numbers is “);
WRITEDATA(ans);
getch();

}
/*
Output:
 Enter the value < number>4
 Enter the value < number>5
 product of numbers is
 answer=20
 sum of numbers is
 answer=9
*/

4.8.3 File Inclusion
All include files are placed at directory c:\tc\include for turbo C compiler. Hence if you copy any heard
file written by you into this directory, you can include this file as

#include <findarea.h>

If you have placed the file in the current directory, the you can include such a file with a preprocessor
directive # include “findarea.h”, as shown in example 4.7

93Functions and Storage Classes

4.8.4 Conditional Inclusion

Conditional Inclusion of some parts of source code is done using conditional inclusion macros. The
syntax is

#if constant expression
statement sequence

#endif

 or

#if constant expression
statement sequence

#else
statement sequence

 #endif

Example 4.11elseifmacro.c A program to demonstrate the usage #if, #else, and #endif preprocessor
directive.
#include<stdio.h>
#include<conio.h>
#define UPPER 5000
#define BONUS1 1000
#define BONUS2 500
#define bp 1000
void main()
{

int netpay;
printf(“\n The basic pay is: %d”,bp);
#if bp<UPPER
netpay=bp+BONUS1;
#else
netpay=bp+BONUS2;
#endif
printf(“\n netpay = %d”, netpay);
getch();

} // end of main
/*
Output:

C & Data Structures by Practice94

 Enter the basic pay 1000
 netpay = 2000
*/
4.8.5 Conditional Compilation #ifdef and #ifndef Statements.
In order to prevent inclusion of macros more than once and leading to multiple declarations, we can
use macro #ifdef and #ifndef, to indicate if defined and if not defined. The general syntax is :
 #ifdef macroname #ifndef

 Statements or statements
 #endif #endif

4.8.6 #undef
A macro must be undefined before it is redefined. Consider the macro definitions. In this module we
will also use conditional inclusion like #ifdef
Example 4.12 undef.c

#include<stdio.h>
#include<conio.h>
#define UPPER 100
#define LOWER 10
#define WRITEDATA printf(“\n answer=%d”,ans);

void main()
{

int temp= 70,ans=10;
if (temp<UPPER && temp>LOWER)
WRITEDATA;

#ifdef UPPER
#undef UPPER
#endif
#ifdef LOWER
#undef LOWER
#endif
// now we can set new limits for UPPER & LOWER
#define UPPER 60
#define LOWER 50
if (temp<UPPER && temp > LOWER)
WRITEDATA;

}// end of main
/*

95Functions and Storage Classes

Output:
 Answer=10(printed from the 1st if statement, the second WRITEDATA is not executed as the 2nd
if loop returns a false.)
*/
4.8.7 #error Macros

 #error macro usage is shown below. When #error macro is encountered, the
 compiler displays the error message. Note that error message is not in double
 quotes

#ifdef UPPER
#include<upper.h>

 #elifdef // this macr is similar to if-else-if
 #include<lower.h>
 #else
 #error Incorrect inclusion of Header files

 #endif

OBJECTIVE QUESTIONS

1. what is the value of y = floor(35.5)
a) 35 b) 35.5 c) 36 d) 35.0

2. what is the value of y = ceil(35.5)
a) 35 b) 35.5 c) 36 d) 35.0

3. sizeof() operator in C is a Library function true/false

4. getch() and getche() perform the same operation true/false

5. In #include<stdio.h> statement, stdio.h, under turbo C, is available at
a) current directory b) tc\include c) tc\bin d) none

6. In #include “circle.h” statement, circle.h is available at
a) current directoryb) tc\include c) tc\bin d) none

7. What will be output for printf(“%c”, 65);
a) 6 b) A c) 10 c) none

8. When two strings are equal strcmp(stg1,stg2) returns
a) -1 b) 0 c) 1 d) true

9. How many times “Hi” will be printed.
{ int x=0;

 printf(“Hi”);
 findarea(x);

}
a) 1 b) 2 c) infinite d) 0

C & Data Structures by Practice96

10 Call by reference is default mode of transferring values to a function true/false

11 For recursive procedures we can use following storage allocations
a) static b) heap c) stack d) global

REVIEW QUESTIONS

1. Explain call by reference call by value ?

2. Explain the need to declare function prototype before main() function?

3. What are the storage classes?

4. Explain the difference between static and stack storage?

5. Distinguish global and external declarations.

6. What is the role of pre processors?

7. What are macros? Explain the #ifdef and #ifndef statements with exmples

SOLVED PROBLEMS

1 lcm.c Write a C program to find LCM of two integers
#include<stdio.h>
#include<conio.h>
// function prototype declaration
int LCM(int a,int b);
void main()
{ int p,q,r;

clrscr();
printf(“enter any 2 numbers\n”); /*getting the input*/
scanf(“%d%d”,&p,&q);
r=LCM(p,q); /*function call*/
printf(“the lcm between %d and %d is %d\n”,p,q,r);
getch();

} /*end of main*/
int LCM(int a,int b)
{ int x;

x=a<b ?b:a; /*use of conditional operators*/
while(x<=(a*b)) /*loop begins*/
{ if((x%a==0) && (x%b==0))

return(x);/*returning the value of x to main*/
x++;

} /*end of loop*/
return 0;

97Functions and Storage Classes

} /*end of function LCM*/
/*
OUTPUT:
enter any 2 numbers
4 10
the lcm between 4 and 10 is 20
*/

2 bincode.c Write a c program to find the binary code of a number
#include<stdio.h>
#include<conio.h>
// function prototype declaration
void Int2Bin(int n);
void main()
{

int n;
clrscr();
printf(“enter the number\n”); /*getting input from the user*/
scanf(“%d”,&n);
Int2Bin(n); /*function call*/
getch();

} /*end of main*/
void Int2Bin(int n) /*function definition*/
{ if(n/2)

 Int2Bin(n/2); /*calling the function recursively*/
printf(“%d”,n%2);

} /*end of function Int2Bin(int n)*/
/*
OUTPUT:
enter the number
4
100
*/

3 palen.c Write program to check whether the given number is palindrome or not*/
#include<stdio.h>
#include<conio.h>
//function prototype declarations
void PALINDROME(int x);
void main()
{ int x;

clrscr();
printf(“enter a number\n”);
scanf(“%d”,&x); /*input a number from the user*/
PALINDROME(x); /*function call*/

C & Data Structures by Practice98

getch();
} /*end of main*/
void PALINDROME(int n) /*function definition*/
{ int m,r,s=0;

m=n;
while(n!=0) /*when the number is not 0*/
{ r=n%10;

s=s*10+r;
n=n/10;

}
if(s==m) /*if value of s equals m*/
 printf(“palindrome\n”);
else
 printf(“not palindrome\n”);

} /*end of function PALINDROME*/
/*
OUTPUT
enter a number
121
palindrome
*/

4 exchg.c Write a C program to exchange the values of 2 variables. In this model, we do not
use a variable temp

algorithm : x=10 y=15
 x=x+y; x=25

y=x-y; y=25-15 = 10
x=x-y; x=25-10 =15

 Therefore x=15, y=10
*/
#include<stdio.h>
#include<conio.h>
//function prototype declarations
void swap2(int a,int b);
void main()
{ int a,b;

clrscr();
printf(“enter two numbers\n”);
scanf(“%d%d”,&a,&b); /*input 2 numbers from the user*/
swap2(a,b); /*function call*/
printf(“%d\t %d\n”,a,b);
getch();

} /*end of main*/
void swap2(int x,int y) /*function definition*/

99Functions and Storage Classes

{ x=x+y;
y=x-y;
x=x-y;
printf(“incide Swap2 %d\t%d\n”,x,y);

} /*end of function swap*/
/*
OUTPUT:
enter two numbers
22 43
incide Swap2 43 22
22 43
*/

5 armsg.c Write a C program to print yes if the given num is an armstrong number. In an
Armstrong number sum of cube of individual digits will be the number it self. For example,
consider a number 4 0 7.

Sum of cube of digits = 43 + 0 3 +7 3 = 407
#include<stdio.h>
#include<conio.h>
// function prototype declaraations
void armstrong(int n) ;
void main()
{ int x;

clrscr();
printf(“enter a number\n”); /*input from the user*/
scanf(“%d”,&x);
armstrong(x); /*function call*/
getch();

} /*end of main*/
void armstrong(int n) /*function definition*/
{ int p,r,s=0;

p=n; /*storing the value of n in p*/
while(n) /*checking for n,loop begins*/
{ r=n%10;

s=s+(r*r*r);
n=n/10;

}/*end of while loop*/
if(p==s) /*checking the value of s after the loop with p*/

printf(“yes. Given number is Armstrong number\n”);
else

printf(“no. Given number is NOT a Armstrong number \n”);
}/*end of function armstrong*/
/*

C & Data Structures by Practice100

OUTPUT:
enter a number
1234
no. Given number is NOT a Armstrong number
*/

6. fibrecur.c Write a C function to generate Fibonacci series. In a Fibonacci series the series
starts with 0 and 1 and next number will be a sum of previous two numbers. For example 3
rd number will be sum of 1 & 2 numbers i.e 0+1 = 2. The series for n=6 would be

 1 1 2 3 5 8 …… and so on.

// now let us write a recursion version of Fibonacci number generator
// finds n the Fibonacci number. Algorithm used is for n<3,fibno = 1
// else fibno=fin(n-1)+fib(n-2).
// Programe stops if n=2 || n=1
/*Program to generate the fibonacci series*/
//fibrecur.c
#include<stdio.h>

int fib(int x);/*function definition*/
void main()
{

int n,ans=0;

printf(“enter n:”);
scanf(“%d”,&n); /*input from the user*/
ans=fib(n); /*function call*/
printf(“\n Fibonacci number for a given <%d>: %d “, n,ans);

} /*end of main*/
int fib(int x) /*function definition*/
{ int ans;
 if (x<3) // i.e 1st and 2nd terms
 return 1;
 else
 ans = fib(x-1)+fib(x-2);
 return ans;
}
/*output
enter n:8
 Fibonacci number for a given <8>: 21 */

ASSIGNMENT PROBLEMS

1. Write a program to compute sum of n natural numbers. Use recursion.

2. Write a function module to reverse the string.

101Functions and Storage Classes

3. Write c code for
a) displaying error message using #error directive
b) finding of maximum of two numbers.

4. Write a c code to sort the given array of integers.

5. Write a program to merge two sorted array in to a third array.

6. Write a function to compute the total of three subject marks. Another function to compute totals,
average and declare the result. For example > 60 of average means first class else declare as second
lass. Class comprises 50 students. Use functions and separate arrays for subjects, total, avg.

Solutions to Objective Questions
1) a 2) c 3) true 4) false 5) b
6) a 7) c 8) 0 9) c 10) false

11) c

This page
intentionally left

blank

5
ARRAYS & STRINGS

CHAPTER

One dimensional & Two dimensional arrays, initialization, string variables-declaration, reading, writing,
Basics of functions, Parameter passing, String handling function, user-defined functions, recursive
functions, variables and storage classes, scope rules, block structure, header files, C preprocessor, example
C programs.

In day to day life there are several occasions, where in we have to store, data of same type in contiguous
locations, like marks obtained by a student in six different subjects are shown in an array named marks
in Fig. 5.1. Elements of the array are referenced by array name followed by subscript. we have
shown an array named marks 3, six subject marks, scored by the student can be represented by
marks[0]=80.0 and marks[5]=70.0 etc.

 UMKM

ã~êâë=xMz ã~êâë=xNz ã~êâë=xOz ã~êâë=xRz

M N O P Q R
ã~êâë

VMKM NMMKM RMKM SRKM TMKM

Fig. 5.1 Representation of an array

General syntax of array is : storage class data type array [expression]

Note that storage class is optional. Data type is data type of the array. Array is name and expression is a
positive integer. Example of valid declarations of array are:

 float marks[6] = { 60.0, 66.0, 70.0, 80.0, 90.0, 100};
 float marks[] = { 60.0, 66.0, 70.0, 80.0, 90.0, 100.0};// no need to declare dimension
 char stg[]={ ‘g’,’o’,’o’,’d’};

C & Data Structures by Practice104

 5.1 HOW ARRAYS ARE STORED IN THE MEMORY
Consider an array named x, declared as int x[]= {80,90,100,50,65,70};

UM

ñxMz ñxNz ñ xOz ñ xPz ñ xQz ñ xRz

ñ

VM NMM RM SR TM

 memory 2000 2002 2004 2006 2008 2010 = 12 bytes
Fig. 5.2 Representation arrays with memory locations shown

The addresses shown above are dummy addresses. Using of sizeof operator would tell us the memory
requirement of data type int on your hardware. Assuming that it is 2 bytes, the memory of the array
element are shown in Fig. 5.2.

Example 5.1 array.c write a program to display the array elements along with their address.
Sizeof operator provide size of data type in bytes.
#include<stdio.h>
//#include<conio.h>
void main()
 { int i,n; //number of ements of array x
 int x[]={80,90,100,50,65,70};
 n= sizeof(x)/sizeof(int);
 printf(“\n size of data type <int>%d “, sizeof(int));
 printf(“\n Memory space allocated to x[6] : %d “, sizeof(x));
 printf(“\n no of elements in array x = %d”,n);
 // %u displays the address in unsigned decimal integer
 // %x displays the address in hexa with 0x omitted.

 printf(“\n array elements\t:\taddress “);
 printf(“\naddress in unsigned decimal integer”);

 for (i=0;i<n; i++)
 printf(“\n%d\t:\t%u”, x[i],&x[i]);
 printf(“\naddress in hexa with 0x omitted.\n”);

 for (i=0;i<n; i++)
 printf(“\n%d\t:\t%x”, x[i],&x[i]);

 printf(“\n”);
}
output
 size of data type <int>4

105Arrays & Strings

 Memory space allocated to x[6] : 24
 no of elements in array x = 6
 array elements : address
address in unsigned decimal integer
80 : 1245024
90 : 1245028
100 : 1245032
50 : 1245036
65 : 1245040
70 : 1245044
address in hexa with 0x omitted.
80 : 12ff60
90 : 12ff64
100 : 12ff68
50 : 12ff6c
65 : 12ff70
70 : 12ff74
Press any key to continue

 5.2 ARRAY INITIALIZATION

You have already seen declaration and initialization of the type:
 float marks[6] = { 60.0, 66.0, 70.0, 80.0, 90.0, 100};
 char stg[]={ ‘g’,’o’,’o’,’d’};

We can use scanf to read into an array. In the following example, we will show use of scanf when we
reverse the string.

Example 5.2 revstg.c a program to read the input string character by character from keyboard
and reverse the string
#include<stdio.h>
#include<conio.h>
// function prototype declarations
 int length(char a[20]);
void main()
 { int count=0,i;
 int len; // length of the string
 char c;
 char x[20]; // array of characters. string
 // get a character
 printf(“\n Enter a word and press <enter>\n”);

C & Data Structures by Practice106

 c=getchar();
 while (c!=’\n’) // ‘\n’ is end of line character i.e. pressing enter key
 {
 x[count]=c;
 count++;
 c=getchar();

 }
 // we have reached end of line. Append ‘\0’ to the string
 x[count]= ‘\0’;
 len = count;
 // Now display the string you have just read
 printf(“\n String inputted : %s “, x);
 printf(“\n space allocated to single char : %d byte”, sizeof(char));
 printf(“\n Memory space allocated to string x[] : %d “, sizeof(x));
 printf(“\n No of characters in the string x [] : %d “, length (x));
 // now reverse the string
 printf(“\n string X reversed.\n”);
 for (i=len-1;i>=0;i—)
 printf(“%c”,x[i]);

}
 int length(char a[]) /*function definition*/
 { int i=0;

 while(a[i]!=’\0') /*when the character is not null*/
 i++;

 return i;

 }/*end of function length*/
/*
 Enter a word and press <enter>
HELLO

 String inputted : HELLO
 space allocated to single char : 1 byte
 Memory space allocated to string x[] : 20
 No of characters in the string x [] : 5
 string X reversed.
OLLEH */

107Arrays & Strings

 5.3 MULTI DIMENSIONAL ARRAYS
Arrays can have more than one dimension. For example a matrix is two dimensional array, with
number of rows and number of columns.

`çäìãåë

M N

NM
M

N

O

P

OM

NT

O P
^=
êçïë

This is matrix A with dimensions 4 X 4.
written as A[4][4]. First dimension is row and
second dimension is columns.

As per C convention elements in row major
representation is
A[0][0] A[0][1] A[0][2] A[0][3]
A[1][0] A[1[1] A[1][2] A[1][3]
A[2][0] A[2][1] A[2][2] A[2][3]
A[3][0] A[3][1] A[3][2] A[3][3]

Note A[0][0] = 10
Fig. 5.3 Two dimensional array matrix A[4][4] A[2][2] = 20

 A[3][2] = 17

Example 5.3 transpose.c. A program to find the transpose of a matrix
//transpose.c
#include<stdio.h>

// functional prototype declarations
void Transpose(int A[10][10], int n);// n is the order of square matrix
void ReadMatrix(int A[10][10], int n);
void PrintMatrix(int A[10][10], int n);
void main()
{

int n,A[10][10];

printf(“Enter the order of square matrix <n>”);
scanf(“%d”,&n);
ReadMatrix(A,n);
printf(“The elements of the Matrix are:\n”);
PrintMatrix(A,n);
printf(“The elements of the Transpose Matrix are:\n”);
Transpose(A,n); /*function call. A is name of matrix. Name is address is */

} /*end of main*/

void Transpose(int A[10][10],int n) /*function definition*/
{

int i,j,t;

C & Data Structures by Practice108

for(i=0;i<n;i++) /*loop1. i=1 because you don’t have to touch x[0][0]*/
{

for(j=0;j<i;j++) /*loop2*/
{

t=A[i][j];
A[i][j]=A[j][i]; /*swapping*/
A[j][i]=t;

} /*end of loop2*/
}

// output the matrix
PrintMatrix(A,n);

} /*end of function transpose*/

void ReadMatrix(int A[10][10], int n)
{

int i,j;
printf(“Enter the elements\n”);
for(i=0;i<n;i++)
 {

 for(j=0;j<n;j++)
 scanf(“%d”,&A[i][j]); /*input elements*/

}
}//end of ReadMatrix
void PrintMatrix(int A[10][10], int n)
{ int i,j;

for(i=0;i<n;i++)
{ for(j=0;j<n;j++)

{ printf(“ %d “,A[i][j]);
}
printf(“\n”);

}
}//end of ReadMatrix
/*output
Enter the order of square matrix <n>2
Enter the elements
1 2 3 4
The elements of the Matrix are:
 1 2
 3 4
The elements of the Transpose Matrix are:
 1 3
 2 4 */
Example 5.4 matmul.c. A program to find the product of two matrices
//matmult.c

109Arrays & Strings

#include<stdio.h>
// functional prototype declarations
void MatrixMul(int A[10][10],int B[10][10],int C[10][10],int m,int n,int p);// m and n are the order of
square matrix
void ReadMatrix(int A[10][10],int m,int n);
void PrintMatrix(int A[10][10],int m,int n);
void main()
{

int m,n,o,p,A[10][10],B[10][10],C[10][10];

printf(“Enter the order of 1st matrix\n”);
scanf(“%d %d”,&m,&n);
printf(“Enter the order of 2nd matrix\n”);
scanf(“%d %d”,&o,&p);
if(n == o)
{

ReadMatrix(A,m,n);
ReadMatrix(B,o,p);
printf(“\nThe elements of 1st Matrix are:\n”);
PrintMatrix(A,m,n);
printf(“\nThe elements of 2nd Matrix are:\n”);
PrintMatrix(B,o,p);
MatrixMul(A,B,C,m,n,p);
printf(“\nThe elements of Resultant multiplication matrix are:\n”);
PrintMatrix(C,m,p);

}

} /*end of main*/

void MatrixMul(int A[10][10],int B[10][10],int C[10][10],int m,int n,int p) /*function definition*/
{

int i,j,k;
for(i=0;i<m;i++)
for(j=0;j<p;j++)

C[i][j]=0; //initializing the resultant matrix as 0

for(i=0;i<m;i++)
for(k=0;k<p;k++)
for(j=0;j<n;j++)

C[i][k] += A[i][j] * B[j][k]; //matrix multiplication
}//end of function MatrixMul

void ReadMatrix(int A[10][10],int m,int n)
{

C & Data Structures by Practice110

int i,j;
printf(“Enter the elements\n”);
for(i=0;i<m;i++)
for(j=0;j<n;j++)

scanf(“%d”,&A[i][j]); /*input elements*/
}//end of ReadMatrix

void PrintMatrix(int A[10][10],int m,int n)
{

int i,j;
for(i=0;i<m;i++)
{

for(j=0;j<n;j++)
printf(“ %d “,A[i][j]);
printf(“\n”);

}
}//end of PrintMatrix
/* output
Enter the order of 1st matrix
2 2
Enter the order of 2nd matrix
2 2
Enter the elements
1 2 3 4
Enter the elements
1 2 3 4
The elements of 1st Matrix are:
 1 2
 3 4
The elements of 2nd Matrix are:
 1 2
 3 4
The elements of Resultant multiplication matrix are:
 7 10
 15 22 */

 5.4 CHARACTER ARRAY – STRING HANDLING IN C LANGUAGE
An array of characters is called string variable. A string variable will always be automatically terminated
with ‘\0’ (NULL) character. C compiler treats occurrence of NULL character to mean the end of string.
In the following program, we would check for occurrence of ‘\0’ to indicate the end of strings. Consider
string declaration shown below and which type of declaration is best.
 char city[6] =”Mumbai”; //incorrect as no space for adding ‘\0’ (NULL) character.
 char city[6] =”Mumbai”; // correct. ‘\0’ (NULL) character is added automatically.

111Arrays & Strings

 char city[] =”Mumbai”; // correct. ‘\0’ (NULL) character is added automatically.
 // This is preferred mode and we will be using this mode
 // through out the textt
 Example 5.7 concat.c A program to concatenate two strings

#include<stdio.h>
#include<conio.h>
void concat (char x[],char y[]);
void main()
{

char x[20],y[20]; // x 7 y are two strings
clrscr();
printf(“enter any 2 strings\n”);
scanf(“%s%s”,x,y); /*input 2 strings from the user*/
concat(x,y); /*function call*/
getch();

}/*end of main*/
void concat(char a[],char b[]) /*function definition*/
{ int i;

for(i=0;a[i]!=’\0';i++) // check for ‘\0’ occurence
printf(“%c”,a[i]);

for(i=0;b[i]!=’\0';i++)
printf(“%c”,b[i]);

} /*end of function concat*/

 5.5 STRING.H – LIBRARY FUNCTION
C compiler provides a library function called string.h. The functions supported by the header file
string.h are:

strlen() : length of the char array
strcpy() : copies a string to another
strcat() : concatenates two strings
strcmp() : compares two strings .
strlwr() : converts from upper case to lower case
struper() : converts from upper case to lower case

 strrev() : reverses a string

To be able to use above library function we have to include <string.h> or <stdlib.h>. The best ways to
learn programming is to write programs. Let us write our own code for achieving above. For all this
function, you can write main program and forward the character array through a function call. For
example ans=stglen(stg);, where char stg[20] ; is the character array declared. We provide a main
program which you can use to test the functions.
Example 5.8. stg.c

//stg.c. main program to test the string handling functions

C & Data Structures by Practice112

 #include<stdio.h>
#include<conio.h>
#include<stdio.h> // string functions line strlrn() etc
// Function prototype declarations
int stglen(char stg[20]);
int stgcopy(char stg2[20],char stg1[20]);

void main()
{ int len, flag ; // flag = 0 to false, flag =1 means true

 char stg1[20],stg2[20], char stg3[20];

 printf(“\n Enter<stg1>”);
 gets(stg1);
 printf(“\n Enter<stg2>”);
 gets(stg2);

 len=stglen(stg1);
 printf(„\n length of the string thru our program : %d “,len);

 printf(„\n length of the string thru string.h : %d “, strlen(stg1));
 flag=stgcmp(stg1,stg2);
 if (flag) // i.e. if flag is true i.e. flag == 1
 printf(“\n Both string stg1 and stg2 are identical);
 else

 printf(“\n Both string stg1 and stg2 are not equal);
 getch();
} // end of main

 5.8.1 String Length

 int stglen(char stg[20])
 { int count=1;

 while (stg[count] !=’\0’) // ’\0’ is NULL character. Denotes end of string
 count ++;
 return count;
 }
 We can also use the function provided by string.h : len=strlen(stg);

5.8.2 String Copy

 stg1 is a source string and stg2 is a destination string. strcpy(stg2,stg1) of string.h
 would achieve the same result
 void stgcopy(char stg2[20],char stg1[20])
 { int count = 0;

113Arrays & Strings

 while(stg1[count] !=’\0’)
 { stg2[count]=stg1[count];
 count++;
 }
 stg2[count]= ’\0’; // we have to insert NULL at the end
 }
5.8.3 String Compare

int stgcmp(char stg2[20],char stg1[20])
 { int count =0;

 while ((stg1[count] == stg2[count]) && stg1[count]!=’\0’
 && stg1[count]!=’\0’)
 count ++
 /* when you come out of loop, if both stg1 & stg2 are equal to ’\0’
 then it can be said that both strings are identical.In such a case we will
 return 1. Else, we will return a 0. */

 if ((stg1[count] ==’\0’) && (stg2[count] ==’\0’))
 return 1;
 else
 return 0;
 }

5.8.4 Sub String Extraction from A String

In the main program, we need to pass as arguments the stg1 containing the string, stg2 to hold extracted
string, substring start position, and length of sub string. For example consider the string:

I LOVE INDIA. We would like to extract INDIA. The
 extractstg(stg1,stg2,8,5); INDIA at position 8 and 5 characters

void extractstg(char stg1[20], char stg2[20],int pos,int len)
 { int count =1;

while(count <= pos)
 count ++;
 count=1;
 while (count <= len)
 stg2[count]=stg1[count];
 stg2[count]=’\0’; // insert NULL character

 Example 5.8.5 chararraysort.c A program to sort strings.
#include<stdio.h>

C & Data Structures by Practice114

#include<string.h>
#define gappu
//fn prototype declarations
void charraysort(char x[10][10],int n);
void main()
{ int count = 0,n=0;

int i;
char stg[10][10];
// read in the string

 printf(“\n Enter string<END to stop>: “);
scanf(“%s”,stg[count]);
while((strcmp(stg[count],”END”)!=0))
 { count++;
 printf(“\n Enter string<END to stop>: “);
 scanf(“%s”,stg[count]);
 }

 charraysort(stg,count);
printf(“\n Sorted strings……”);

 for(i=0;i<count;i++)
 puts(stg[i]);

} // end of main
// fun definition
void charraysort(char x[10][10],int n)
{ char temp[10];

 int i,j;
for (i=0;i<n-1;i++)
{

 for (j=i+1;j<n;j++)
 {

 if(strcmp(x[i],x[j])>0)
 { // swap

 strcpy(temp,x[j]);
 strcpy(x[j],x[i]);

 strcpy(x[i],temp);
 }

 }
 }

}// end of charraysort()
output:
 Enter string<END to stop>: ramesh
 Enter string<END to stop>: usha
 Enter string<END to stop>: thunder
 Enter string<END to stop>: anand
 Enter string<END to stop>: gautam

115Arrays & Strings

 Enter string<END to stop>: END
Sorted strings…….
anand
gautam
ramesh
thunder
usha

OBJECTIVE QUESTIONS

1. __________ method copies the value of an argument into the formal parameters of the subroutine.

2. __________ method copies the address of the actual parameters into the formal parameters.

3. Character array must be terminated with
a) \0 b) \n c) \a d) \t

4. An array with out initial values contains
a) all zeros b) all 1s c) garbage value d) none of the above

5. Array can be initialized at the time of declaration it self using
a) square bracket b) braces c) (and) d) single quotes

6. The number in a square brackets of an array is called
a) super script b) subscript d) dimension d) range

7. Subscript of an array A with m elements can be dimensioned as
a) A[m] b) A[m-1] c) A[m+1] d) none

8. Array declared as array A[7] the elements are subscripted between
a) 0….m b) 0….m+1 c) 1……m d) 0…..m-1

9. An array is always passed using pass by value to a function TRUE/FALSE

10. In a row major representation, the first subscript refers to row TRUE/FALSE

11. In an array, array elements are stored in contiguous locations TRUE/FALSE

12. An array is a collection of different data types TRUE/FALSE

13. If int A[6] is a one dimensional array of integers, which of the following refers to the value of
fourth element in the array:

 a) A[4] b) A[2] c) A[3] d) none
14. Consider the following declaration of a two-dimensional array in C:

char a[100][100];
Assuming that the main memory is byte-addressable and that the array is stored starting from
memory address 0,” the address of a[40][50] is

a) 4040 b) 4050 c) 5040 d) 5050

C & Data Structures by Practice116

15. Suppose an array x contains the integer values [10,20,-10,25,0,-1]. The output of the following
program segment is:

for(i=1;i<6;i++)
{

if(x[i]<0)
continue;
if(x[i]==0)

break;
printf((“%d”,x[i]);

 }
 a) 10,20,-10,25,0,-1 b),-10,25,0,-1
 c) 20,-10,25 d) 10,20,25

16) Spot the invalid array declarations
1) float c(20) 2) int x[]={1,5,8}; 3) int n(0..50) 4 char city[5]
a) 1,2 b) 1,3,4 c) 1,3 d) 1,2,4

REVIEW QUESTIONS

1 Write in detail about one dimensional and multidimensional arrays. Also write about how
initial values can be specified for each type of array?

(a) In what way array is different from ordinary variable?
(b) what conditions must be satisfied by the entire elements of any given array?
(c) What are subscripts? How are they written? What restrictions apply to the values that can

be assigned to subscripts?
(d) What advantage is there in defining an array size in terms of a symbolic constant rather

than a fixed integer quantity?
2 How are multidimensional arrays defined? Compare with the manner in which one- dimensional

arrays are defined.

SOLVED PROBLEMS

1 sum.c.Write a C program to find the sum of elements of an array with recursion

//sum.c
#include<stdio.h>
// function prototype declarations
int sumofelements(int a[] , int n);
void main()
{

117Arrays & Strings

int a[10],n,i,ans;

printf(“enter the number of elements\n”);
scanf(“%d”,&n); /*how many elements*/
printf(“enter the elements”);
for(i=0;i<n;i++)
 scanf(“%d”,&a[i]); /*input elements from the user*/
// forward array a to function by call by ref method

 ans=sumofelements(a,n); /*function call*/
printf(“sum of all elements=%d”,ans);

} /*end of main*/
sumofelements(int x[],int m) /*function definition*/
{ if(m==1) /*checking for value of m*/

 return(x[0]);
else
 return(x[m-1]+sumofelements(x,m-1)); /*calling function recursively*/

}/*end of function sumofelements*/
/*
OUTPUT:
enter the number of elements
3
enter the elements 1 2 3
sum of all elements=6*/

2 extract.c.Write a C program that extracts a portion of the string starting from nth position
upto mth position/

//extract.c
#include<stdio.h>
#include<conio.h>
#include<string.h> // allows use of library contained in string header
//function prototype declarations
void Extract(char x[],int m, int n); // m=start position, n= ending position
void main()
{

char x[40]; // x is a string of length 40
int i,m,n;
clrscr();
printf(“enter a string\n”);
scanf(“%[^\n]”,x); /*input from the user.”%[^\n]” allows white spaces also*/
 printf(“enter values of starting (n),and ending (m) positions,n>m\n”);
scanf(“%d%d”,&m,&n); /*input from the user*/

C & Data Structures by Practice118

Extract(x,m,n);
getch();

} /*end of main*/
void Extract(char a[], int m, int n)
{ int i;

for(i=m;i<=n;i++)
 {
 printf(“%c”,a[i]);
 }

} /*end of function extract*/
/*
OUTPUT:
enter a string
education
enter values of starting (n),and ending (m) positions m,n> 2 4
uca
*/
3 stglen.c Write a program to find the length of a string/

//stglen.c
#include<stdio.h>
//function prototype declarations
int length(char x[]);
void main()
{ int ans;
 char x[20]; // dimension of string array x

printf(“enter a string:”);
scanf(“%s”,x); /*input string from the user*/
ans =length(x); /*function call*/

 printf(“length=%d\n”,ans);
getch();

}/*end of main*/
int length(char a[]) /*function definition*/
{ int i=0;

while(a[i]!=’\0') /*when the character is not null*/
 i++;
return i;

}/*end of function length*/
/*
enter a string:hello
length=5 */

119Arrays & Strings

4. matdet.c. Write a C program to find the determinant of a matrix

//Example 5.4 mat.c. A program to find the Det of a matrix
#include<stdio.h>
#include<conio.h>
#include<math.h>
// functional prototype declarations
int Det(int A[10][10],int n);// n is the order of square matrix
void ReadMatrix(int A[10][10],int n);
void PrintMatrix(int A[10][10],int n);
int det=0;
void main()
{

int n,A[10][10];
clrscr();
printf(“Enter the order of the matrix\n”);
scanf(“%d”,&n);
ReadMatrix(A,n);
printf(“\nThe elements of the given Matrix are:\n”);
PrintMatrix(A,n);
printf(“The Det of the given matrix is : %d “,Det(A,n));
getch();

} /*end of main*/

int Det(int A[10][10],int n) /*function definition*/
{

int k,l,p,q,i=0,j,temp[10][10],sign;
if(n==2)

return (A[0][0] * A[1][1] - A[0][1] * A[1][0]);
else
{

for(j=0;j<n;j++)
{

for(k=0,p=0;k<n && p<n-1;k++,p++)
for(l=0,q=0;l<n && q<n-1;l++,q++)
{

if(k==i) k++;
if(l==j) l++;
temp[p][q]=A[k][l];

}
printf(“the sub matrix is:\n”);
PrintMatrix(temp,n-1);
sign=pow(-1,i+j);
det += A[i][j] * sign * Det(temp,n-1);

}
return det;

C & Data Structures by Practice120

}
}//end of function Det
void ReadMatrix(int A[10][10],int n)
{

int i,j;
printf(“Enter the elements\n”);
for(i=0;i<n;i++)
for(j=0;j<n;j++)

scanf(“%d”,&A[i][j]); /*input elements*/
}//end of ReadMatrix

void PrintMatrix(int A[10][10],int n)
{

int i,j;
for(i=0;i<n;i++)
{

for(j=0;j<n;j++)
printf(“ %d “,A[i][j]);
printf(“\n”);

}
}//end of PrintMatrix
/*
OUTPUT:
Enter the order of the matrix
3
The elements of the given Matrix are:
1 2 3 4 5 6 7 8 9
The elements of the given matrix are:
1 2 3
4 5 6
7 8 9
the sub matrix is:
5 6
8 9
the sub matrix is:
4 6
7 9
the sub matrix is:
4 5
7 8
The Det of the given matrix is : 0
*/
5 singular.c. Write a program to find the singular of a matrix. A matrix is called singular
matrix if its determinant is zero

//Example 5.4 mat.c. A program to find the Det of a matrix

121Arrays & Strings

#include<stdio.h>
#include<math.h>
// functional prototype declarations
int Det(int A[10][10],int n);// n is the order of square matrix
void Determinent(int A[10][10], int B[10][10],int n);
void ReadMatrix(int A[10][10],int n);
void PrintMatrix(int A[10][10],int n);
int det=0;
void main()
{ int n,A[10][10],B[10][10];

printf(“Enter the order of the matrix\n”);
scanf(“%d”,&n);
ReadMatrix(A,n);
printf(“\nThe elements of the given Matrix are:\n”);
PrintMatrix(A,n);
Determinent(A,B,n);
printf(“\nThe Determinenet matrix is: \n”);
PrintMatrix(B,n);
if(Det(B,n)==0)

printf(“The given matrix is Singular”);
else

printf(“The given matrix is not Singular”);
getch();

} /*end of main*/

void Determinent(int A[10][10], int B[10][10],int n)
{

int k,l,p,q,i,j,temp[10][10],sign;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{

for(k=0,p=0;k<n && p<n-1;k++,p++)
for(l=0,q=0;l<n && q<n-1;l++,q++)
{

if(k==i) k++;
if(l==j) l++;
temp[p][q]=A[k][l];

}
sign=pow(-1,i+j);
B[i][j] = A[i][j] * sign * Det(temp,n-1);

}
}
int Det(int A[10][10],int n) /*function definition*/
{

C & Data Structures by Practice122

int k,l,p,q,i=0,j,temp[10][10],sign;
if(n==2)

return (A[0][0] * A[1][1] - A[0][1] * A[1][0]);
else
{

for(j=0;j<n;j++)
{

for(k=0,p=0;k<n && p<n-1;k++,p++)
for(l=0,q=0;l<n && q<n-1;l++,q++)
{

if(k==i) k++;
if(l==j) l++;
temp[p][q]=A[k][l];

}

sign=pow(-1,i+j);
det += A[i][j] * sign * Det(temp,n-1);

}
return det;

}
}//end of function Det

void ReadMatrix(int A[10][10],int n)
{

int i,j;
printf(“Enter the elements\n”);
for(i=0;i<n;i++)
for(j=0;j<n;j++)

scanf(“%d”,&A[i][j]); /*input elements*/
}//end of ReadMatrix

void PrintMatrix(int A[10][10],int n)
{

int i,j;
for(i=0;i<n;i++)
{

for(j=0;j<n;j++)
printf(“ %d “,A[i][j]);
printf(“\n”);

}
}//end of PrintMatrix
/*
OUTPUT:

123Arrays & Strings

Enter the order of the matrix
3
enter the elements
1 2 3 4 5 6 7 8 9
The elements of the given Matrix are:
1 2 3
4 5 6
7 8 9
The Determinenet matrix is:
-3 12 -9
24 -60 36
-21 48 -27
The given matrix is Singular
*/

ASSIGNMENT PROBLEMS

1. Write a program to count number of vowels in a given line of text.

2. write a complete C program to convert a lower case string to upper case. accept the input using
scanf statement.

3. Write a program to print the given string in an alphabetical order.

4. Write function modules for finding
a) string length
b) string equality
c) concatenation of two strings.
d) Appending a string at the end of another string.

5 Write a file named mystring.h, comprising all above function modules. Include the header file in
your driver program and test all the modules.

6. The annual examination is conducted for 50 students for three subjects.

Write a program to the data and determine the following.
(a) Total marks obtained by each student.
(b) The highest marks in subject and the roll no of the student who Secured it.
(c) the student who obtained the highest total marks.

7 Write a program to find the largest element in an array?

Solutions to Objective Questions
1) call by value 2) call by ref 3) a 4) c

5) b 6) b 7) a 8) d 9) False
10) True 11) True 12) False 13) c 14) b
15) d 16) c

This page
intentionally left

blank

6
POINTERS

CHAPTER

 6.1 WHAT, WHY AND HOW OF POINTERS
In C, we would like to use pointers because, they point to location in memory and not value and are
very efficient to move multiple data items between main program and function as function arguments.
In addition you can have pointers to a function. Pointer would facilitate reassignment of value just like
you can point any one with your index finger.

 How does Arjuna, the famous archer in Maha Bharata, use his arrows?

 Firstly he removes an arrow from his storage.

 Secondly he gives a name(mantra like Nag Astra).

 Then he points it to ground while he thinks or gets address from his guide(Lord
 Krishna). He points it to ground so that the arrow does not take off accidentally
 and hit the passers by or unintended target.

 Lastly, he aims at the address given and he lets it go!.
 We will also do the same in case of pointers.

k~Ö=Eå~ãÉF
î~äìÉEí~ êÖÉ íF~ÇÇêÉëë

Fig. 6.1 A pointer example with terms

 int *ptr; // you have created a pointer of type int
 // Note ptr is the pointer
 // Pointer is the address
 // *ptr is the value
 Ptr = NULL: // you have now pointed to NULL

 6.2 DECLARATION & USAGE
Let us say that at address 2513, we have stored a integer variable called age.
 And at address 2613, we have integer variable age2.

C & Data Structures by Practice126

 int age =50;
 int age2=18;
 we want pointer ptr to point to age;

 age

RM
é íê

~ Ö É

~ ÇÇ êÉ ë ë =ORNP

Fig. 6.2 Pointer in a memory

 ptr = & age; // you have assigned ptr to age.
 printf(“my age %d : ”, age); // displays 50
 printf((“my age %d”, *ptr); // displays 50
 //*ptr which is value stored location i.e. 50

 Once created you can reassign pointers
 ptr = & age2;
 printf((“your age %d”, *ptr); // displays 18
 //*ptr which is value stored location i.e. 18

Example:6.1
 //ptr1.c
 // program to introduce you to pointer concepts
 #include<stdio.h>

#include<conio.h>
 void main()
 { int age1 = 50;

 int age2 = 18;
 //create a pointer
 int * ptr;
 // assign it to age1
 ptr = & age1; // & is address of operator
 printf(“\nmy age (age1) %d “, age1); // displays 50

 printf(“\nmy age (*ptr) %d”, *ptr); // displays 50
 //*ptr is value stored location ptr i.e 50

 printf(“\n (&age1) %x (ptr) %x”, & age1, ptr);
 // ptr is address of age1 so is &age1. Hence both must be same

 // now we will reassign the same pointer to age2
 ptr = & age2;

 printf(“\nyour age (*ptr) %d”, *ptr); // displays 18
 //*ptr which is value stored location i.e. 18
printf(“\n(&age2) %x (ptr) %x”, & age2, ptr);

 // ptr is address of age2 so is &age2. Hence both must be same.

127Pointers

printf(“\n(&ptr) %x “, & ptr); // prints out address of variable ptr. We are not
// interested in this address. It is just another address.

 }//end of main
/*OUTPUT:
my age (age1) 50
my age (*ptr) 50
 (&age1) 12ff7c (ptr) 12ff7c
your age (*ptr) 18
(&age2) 12ff78 (ptr) 12ff78
(&ptr) 12ff74 */

A note about address scheme of Intel processors is appropriate:
When you ask for a display of address, the system would display a 32 bit address like ffff:fff4 in Hexa
Decimal notation ; which means
 1111 1111 1111 1111 : 1111 1111 1111 0100 in binary.

 6.3 CALL BY VALUE & CALL BY REFERENCE
(pointers) what are they? You can pass variables to a function by either of :

a) Call by Value. The value of arguments is copied on to formal arguments whenever a function
is called. Thus there is a overhead of copying. As only copy reaches the function, the changes
made in the local function are not reflected onto the original variable in the calling function.
Further if the data to be copied is large, ex. structure, the method is inefficient. It is hence used
only for small data.

b) Call by reference: Actual arguments are not copied but only addresses(pointers) are for-
warded. The functions gets this addresses as arguments and works on the variables located at
the addresses forwarded. Hence changes made to the variables are reflected on to variable
from calling function. We are forwarding only addresses, there are no copying overheads as in
Call by Value.

Example:6.2// program to highlight call by value and call by reference
//Example:3.2 ptr2.c
#include <stdio.h>
#include <stdlib.h>
// declaration of function prototypes
void Swap(int a , int b); // call by value
void PtrSwap (int *a, int * b); // Call by Ref. a & b are pointers by def.

void main()
{ int x = 5;
 int y=10;
 // call by value

C & Data Structures by Practice128

 Swap(x,y);
 printf(“\nafter call by value : x= %d : y = %d “, x,y);
 // call by reference. Note that we have to send pointers i.e. addresses
 //of x & y. Hence we will pass &x , and & y.
 PtrSwap(&x, &y);
 printf(“\nafter call by ref : x= %d : y = %d “, x,y);
}//end of main
// Function definitions
void Swap (int a, int b)
{ int temp ; // two local variables
 temp=a;
 a=b;
 b=temp;
 printf(“\ninside Swap : a= %d : b = %d “, a,b);
}
void PtrSwap (int *a, int *b)
 { // a & b are pointers. Hence we need a pointer called temp
 int *temp ;
 *temp=*a;
 *a =*b;
 *b= *temp;
 printf(“\ninside Swap : a= %d : b = %d “, a,b);
}
/*OUTPUT:
inside Swap : a= 10 : b = 5
after call by value : x= 5 : y = 10*/

In this module a few interesting results are there. Though inside Swap function values actually were
interchanged they were not reflected in the main program as discussed. Whereas in the case of PtrSwap,
wherein we have passed pointers, the result of PtrSwap were reflected to main programmers. This is in
consonance with what we have learnt.

 6.4 DYNAMIC MEMORY AND MALLOC() AND CALLOC()
We can declare an array of 12 integers as int x[12]; This array declaration reserves 12 contiguous
locations in memory. In case user does not use all 12 locations memory will be wasted. Array declaration
is an example of static memory allocation. Instead we can also declare an array as

 int *x ; // x is a pointer variable
//allocate dynamic memory space using malloc()
x = (int *)malloc(12 *sizeof(int));

malloc() function returns a pointer of type int by type casting it as (int*). This pointer points to a
location in heap memory, that has 12 contiguous memory locations allocated by malloc(). Sizeof() is a C

129Pointers

library function which tells the size of ‘int’ variable. To understand Dynamic memory and functioning
of malloc(), we have to learn about C memory organization

GLOBAL: Include section All declarations & definitions are
Function declarations accessible to all the functions.
Structures and global variables
Heap Memory: Access to heap Memory remaining after allocating
memory is only through pointers space to global, code , and
i.e through malloc() or calloc() functions stack/static variables

CODE AREA: The C code, Functions etc
are stored in this section

STACK VARIABLES Life of variable is till life of function
All variables you declare are
stores on STACK in which it is declared. called local variables.

STATIC VARIABLES Life of static variable is till
 of main () .Accessible to all Fns

Fig. 6.3 Memory organization of C language

6.4.1 Function calloc() : Calloc requires two arguments instead of one argument for malloc(). For
example consider

int *x;
x= (int*) calloc (10 * 4);

 The above statement specifies that we would like to allocate 4 bytes to integer data type(space for 10
integers totaling 40 bytes) would be allocated. Most importantly calloc() after allocating memory,
initializes the memory with zeros.

 6.5 POINTERS & ARRAYS: LET US UNDER STAND THE CONNEC-
TION BETWEEN POINTER & ARRAYS

int x [10] = { 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

NM

ñ ñHN ñHP ñHQ ñHVéçáåíÉê

ñ

OM PM QM RM SM TM UM VM NMM

Fig. 6.4 Array with addresses (pointer)

Note that ‘x’ is the name of the array. ‘x’ is also the address of the array and also the address
of the first element of the array. Hence we can call ‘x’ as the pointer to the array too.

Suppose you want to print 4 th element i.e. 40, as per C convention you would write :
printf(“%d”, x[3]);

C & Data Structures by Practice130

Now as the element, we are interested in at position 4 (3 in case we are counting from 0) i.e.
at address x+6.

We have learnt that if we want value from address we have to de-reference the address by using *.
 Ex printf(“%d”, *(x+3));

Example: 6.3 samp7.c to pass an array to a function that receives an array by reference and
sorts an integer array.
Let us write a program to pass an array to a function that receives an array by reference and sorts an
integer array. We can define an array of 10 integers, using malloc() function as follows
 //samp7.c
 #include<stdio.h>
 #include<conio.h>
 // function prototype declarations
 void IntSort(int n, int *a); // receives number of items & array
 void main()

{ int i;
 int n=10;// number of items
 int a[10] ={ 67,87,56,23,100,19,789,117,6,1};
 printf(“\n Given array “);

 for (i=0;i<n;i++)
 {
 printf(“%d “, *(a+i));
 }
 // we are passing array a. Note that array name is ‘a’. Name is address.
 IntSort(n,a);
 printf(“\n Sorted array “);

 for (i=0;i<n;i++)
 {
 printf(“%d “, *(a+i));
 }
 }//end of main

// function definition
 void IntSort(int n, int *a)

 { int i,j, temp=0; // i for outer loop j for inner loop and temp for swapping
 for (i=0; i< n-1; i++) // last value need not be sorted
 {
 // find the smallest of remaining numbers and exchange it with
 for (j=i+1; j< n; j++)
 {
 if (*(a+j) < *(a+i))
 { // swap

131Pointers

 temp=*(a+i);
 (a+i)=(a+j);
 *(a+j)=temp;
 }
 }
 }
 }

/* output
 Given array 67 87 56 23 100 19 789 117 6 1
 Sorted array 1 6 19 23 56 67 87 100 117 789
 */

 6.6 POINTERS & MULTI DIMENSIONAL ARRAYS
6.6.1 Two Dimensional Arrays & Pointers

 Let us say that you have a two dimensional array ‘a’ with 12 rows and 20 columns.
 Then we can declare it as :

int a[12][20]
or

 as a one dimensional array using pointers. For example
int *x[12]

pictorially following figure makes the concept clear. Therefore a[0] points to beginning of first row.
a[11] points to beginning of 11 th row. Note that a[0]….a[11] are pointers to respective rows.

~ xMz

~ xNz

~ xOz

K

K

K

~ xNN z

~

~ HN

~ HO

~ HNN

C & Data Structures by Practice132

Now suppose you want to access 1 st row 5 element ; then
a[1] is the pointer to first row and 5 elements displacement is 5
We know we can write a[1] as *(a+1)
Therefore, address of desired element is a[1]+5 or *(a+1) +5
Value of element is : * (*(a+1) + 5).

Example 6.4 ptr4.c To add two matrices

 To put into practice all the important concepts like two dimensional arrays and dynamic memory
allocations, we will multiply two matrices A & B and put the result in matrix C
//ptr4.c A program to compute the matrix addition using dynamic memory allocation
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#define COL 10
#define ROW 10
void AddMat(int *a[COL],int *b[COL],int *c[COL],int m,int n);
void ReadMat(int *a[COL],int m,int n);
void WriteMat(int *a[COL],int m,int n);
void main()
{

int *a[COL],*b[COL],*c[COL];
int m,n;

//get ROWs and Columns
printf(“enter m,n\n”);
scanf(“%d%d”,&m,&n);
// call ReadMat & Addmatfunction by passing
// allocate dynamic memory to matrices a & b & c
a=(int)malloc(ROW*COL*sizeof(int));
b=(int)malloc(ROW*COL*sizeof(int));
c=(int)malloc(ROW*COL*sizeof(int));

// two dimensional matrices a & b. They are
//pointers to two dimensional arrays i.e. matrices
ReadMat(a,m,n);
ReadMat(b,m,n);
printf(“\nThe first Matrix is:\n”);
WriteMat(a,m,n);
printf(“\nThe second Matrix is:\n”);
WriteMat(b,m,n);
AddMat(a,b,c,m,n);
printf(“\nThe addition of the above Matrices is:\n”);
WriteMat(c,m,n);
getch();

}

133Pointers

void ReadMat(int *a[COL],int m,int n)
{ int i,j;

for(i=0;i<m;i++)
{

for(j=0;j<n;j++)
{

printf(“enter data for element (%d,%d) “,i,j);
scanf(“%d”,&a[i][j]);

}
}

}
void AddMat(int *a[COL],int *b[COL],int *c[COL],int m,int n)
{ int i,j;

for(i=0;i<m;i++)
{

for(j=0;j<n;j++)
{ // two dimensional element access

((c+i)+j)=*(*(a+i)+j)+*(*(b+i)+j);
}

}
}
void WriteMat(int *c[COL],int m,int n)
{ int i,j;

for(i=0;i<m;i++)
{

for(j=0;j<n;j++)
{

printf(“%d\t”,*(*(c+i)+j));
}
printf(“\n”);

}
}
/*
OUTPUT:
enter m,n
2 3
enter data for element (0,0) 1
enter data for element (0,0) 3
enter data for element (0,0) 4
enter data for element (0,0) 6
enter data for element (0,0) 2
enter data for element (0,0) 4
enter data for element (0,0) 5
enter data for element (0,0) 2

C & Data Structures by Practice134

The first Matrix is:
1 3
4 6
The second Matrix is:
2 4
5 2
The addition of the above Matrices is:
3 7
9 8*/

6.6.2 Three Dimensional Arrays & Pointers
 To access an element a[3][4][5]

a) a is the pointer to first row. We need 3 row. Therefore it is a[3] or *(a+3)
b) Column displacement is 4. Therefore address is *(a=3)+4 and value is *(*(a+3)+4)
c) 3 dimensional displacement is 5. Therefore address is : *(*(a+3)+4)

Therefore value of element is: *(*(*(a+3)+4))

6.6.3 Array of Pointers. Pointers can be stored in arrays. You already know that pointer means
address, hence array of pointers means collection of addresses. For example you can store a set of 5
pointers each pointing to a string variable like:

char * ptr[5] = { “welcome”, “to”,”self_learning”,”CDS”, ”Book” }
ptr is a dimension 5 i.e. an array of 5 pointers. The following example will make the concept clear:

Example 6.5 Program to demonstrate use of array of pointers
//ptr5.c Program to demonstrate use of array of pointers
#include<stdio.h>
#include<conio.h>
void main()
 { int i;
 // array of pointers with 5 elements
 char *ptr[5]={“welcome”,”to”,”self_learning”,”CDS”,”Books”};
 char *x; // x is a pointer of type int
 x=ptr; // x now points to ptr, i.e. starting pointer in an array of pointers
 for (i = 0 ; i< 5; i++)

printf(“\n %s”, *(ptr+i));
 // following print statements will teach you more about array of pointers
 printf(“\n %c”, *ptr[3]); // you can expect value of starting element in CDS i.e. C
}

135Pointers

/*
OUTPUT:
welcome
to
self_learning
CDS
Books
C
*/

 6.7 POINTERS TO VOID
Remember ‘void’ is a data type. Usually we will declare pointer to point to a particular type of data.
For example int * ptr or char * ptr etc. Suppose in your program you have multiple data types, the void
can be employed. But typecasting is essential, when void pointer used.
Type casting a void pointer

 Pointer of type void
 (float *) ptr

 type casted to float

 value pointed by void pointer

Example 6.6 voidpointer.c Program to demonstrate use of void pointers

#include<stdio.h>
#include<conio.h>
void main()
 { int x=100;
 float sal = 2000.00;
 void * ptr;// ptr is a pointer to data type void
 // assign void pointer to int
 ptr = &x;
 printf(“%d”, *(int*)ptr); // typecasting of ptr to int
 // assign void pointer to float
 ptr = &sal;
 printf(“\n%f”, * (float*)ptr); // typecasting of ptr to float
}//end of program

/*output
100
2000.000000 */

C & Data Structures by Practice136

 6.8 POINTER TO POINTERS
 Let us say we have a two dimensional array as shown below

uxMz

uxNz

uxOz

uxPz

We could declare the above matrix as int x[4]][6]. Also we have learnt we could have declared as shown
below and allocated space dynamically using malloc(). Note that x is a pointer to location that is starting
address of a one dimensional array that stores entire two dimensional matrix.

 int *x[][6];
 x = (int *) malloc(rows*col*sizeof(int));

Alternatively, we could declare a pointer to point to another pointer that points to array. For example in
the above figure x[0],x[1],x[2],x[3] are pointers to row0,row1 etc.

Example 6.7 ptr7.c Write a program to read the data of an mxn matrix using pointer to pointer

#include<stdio.h>
#include<stdlib.h>
void main()
 {

// Now define a pointer to pointer “x” to an mxn matrix
int **x; // x is a pointer to a pointer
int i,j,m,n;
// allocate dynamic memory using malloc()
//x[i] is a pointer to row i
printf(“\nEnter m and n: “);
scanf(“%d%d”,&m,&n);
for (i=0;i<m;i++)
{

x[i] = (int*) malloc(n*sizeof(int)); // n is size of each row
// we could have written above also as:
(x+i) = (int) malloc(n*sizeof(int)); // n is size of each row

}
// Read data into two dimensional matrix
printf(“\nEnter the elements of matrix...\n”);
for (i=0; i<m; i++)
{

137Pointers

for (j=0; j<n; j++)
{ printf(“\nx[%d][%d] = “,i,j);
 scanf(“%d”,&x[i][j]);
 // you can also write the above as
 // scanf(“%d”, *(*(x+i) + j)); // 2 dimensional pointer representation
}

}
// Display two dimensional matrix
printf(“\nThe elements of the matrix are...\n”);
for (i=0; i<m; i++)
{

for (j=0; j<n; j++)
{ printf(“ %d”, x[i][j]);
 // you can also write the above as
 // printf(“d”,*(*(x+i) + j)); // 2 dimensional pointer representation
}
printf(“\n”); // to print new row on a new line

}
 }// end of main

/*
OUTPUT:
Enter m and n: 2 3
Enter the elements of matrix...
x[0][0] = 1
x[0][1] = 2
x[0][2] = 3
x[1][0] = 4
x[1][1] = 5
x[1][2] = 6
The elements of the matrix are...
1 2 3
4 5 6
*/

OBJECTIVE QUESTIONS

1. The pointer is used to specify a pointer whose base type is unknown and is a generic
pointer.

2. ___________ is the means by which a program can obtain memory during runtime.

3. Memory allocated by C’s dynamic allocation functions is obtained from ______.

4. The malloc function returns a pointer of type —————- which means that we can assign it to
any type of pointer.

C & Data Structures by Practice138

5. Pointer arithmetic is restricted to _______ and_______type pointer.

6. The ____is a unary operator that returns the memory address of it’s operand.

7. In Call by reference actual arguments are not copied but only addresses(pointers) are forwarded
True/False.

8. The declaration of two dimensional arrays int a[12][20] and int *a[20] are one and the same.
True/False

9. Only addition and subtraction operations are permitted on pointers (True /False)

10 Which among these is the indirection operator:
a) & b) + c) % d) *

11 Which of these is not a valid pointer operation?
a) p++; b) 5+(p*5); c) (p)++; d) (p+3);

12 What is the main advantage of allocating memory from dynamic memory for an array
a) The size of variable can be decided at run time
b) Easy to pass as arguments to a function.
c) Accessing array elements becomes easier
d) None of the above

13 Dynamic memory can be allocated with out use of pointers. True/False

14 void main()
{ int age1=50,age2=25, *ptr;

ptr=&age1;
&age2=ptr;
printf(“The value of y is %d”,age2);

}
a) The value of age2 is25 b) The value of age2 is 50
c) Run-time error may occur d) Compilation error

15 printf(“%d”, x[5]); is equal to
a) printf(“%d”, x[5]); b) printf(“%d”, x+5);
c) printf(“%d”, *x+5); d) printf(“%d”, *(x+5));

16. If int A[6] is a one dimensional array of integers, which of the following refers to the value of
fourth element in the array:
a) * (A+4) b) * (A+3) c) A+4 d) A+3

REVIEW QUESTIONS

1. What are pointers? List out reasons for using pointers.

2. state whether each of the following statements is true or false.

139Pointers

Give reasons.
(a) An integer can be added to a pointer.
(b) A pointer can never be subtracted from another pointer.
(c) When an array is passed as argument to a function, a pointer is passed.
(d) Pointers cannot be used as formal parameters in headers to function Definitions.

3. If m and n are declared as integers and p1 and p2 as pointers to Integers, then find out the
errors, if any, in the following statements.

(a) p1=&m; (b).p2=n; (c).m=p2-p1; (d).*p1=&n;
4. Explain the process of assessing a variable through its pointer. Give an example.

5. How to use pointers as arguments in a function? Explain through an example.

6. Explain the process of declaring and initializing pointers ? Give an example.

7. Distinguish pointer * operator (indirection operator) and address operator(&) with examples

8. Give examples of pointer arithmetic for +,-,++.

9. Explain dynamic memory operators malloc, calloc, and free.

10. Differentiate array of pointers and pointer to an array.

SOLVED PROBLEMS

1. samp1.c Write a program using pointers to find maximum of an array // (samp1.c) program
to find maximum in an array using pointers

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
// Function prototypes
int FindMax(int *a, int n);
void SortArray(int *a, int n);

void main()
 { int i, n, max; // n= no of values in an array
 int *x; // x is a pointer to an array

 printf(“how many elements in your array?<n>\n”);
 scanf(“%d”,&n);

 // allocate dynamic memory space using malloc()
 x=(int*)malloc(n*sizeof(int));
 // read in the array

C & Data Structures by Practice140

 for (i=0;i<n;i++)
 { printf(“\n value for %d element=”,i+1);

 scanf(“%d”,x+i); // scanf needs address. we have
 } // given address when we write x+i
 printf(“\n The entered array is....\n”);
 for (i=0;i<n;i++)
 printf(“%d “,*(x+i)); // same as writing x[i]
 // call Findmax function
 max=FindMax(x,n);//x is a pointer to array
 printf(“\n maximum value of given array = %d “,max);
 }//end of main

// Fn definitions
int FindMax(int *x, int n)
{ int max,i;

 max=*x; // *x is the value of 1 element
 for(i=1;i<n;i++)
 { if (max<*(x+i))

 max=*(x+i);
 }
 return max;
 } // end of FindMax
/*
OUTPUT:
how many elements in your array?<n>5
 value for 1 element=2
 value for 2 element=6
 value for 3 element=4
 value for 3 element=2
 value for 3 element=4
The entered array is...
2 6 4 2 4
 maximum value of given array = 6
*/

2. samp2.c Write a c program to illustrate the use of indirection operator “*” to access the Value
pointed by a pointer.

 //sort intarray using pointers
//sortarryptr.c

#include<stdio.h>
 #include<conio.h>

141Pointers

 // function prototype declarations
 void IntSort(int n, int *a); // receives number of items & array

 void main()
{ int i;

 int n=10;// number of items
 int a[10] ={ 67,87,56,23,100,19,789,117,6,1};
 printf(“\n Given array “);

 for (i=0;i<n;i++)
 {
 printf(“%d “, *(a+i));
 }
 // we are passing array a. Note that array name is ‘a’. Name is address.
 IntSort(n,a);
 printf(“\n Sorted array “);

 for (i=0;i<n;i++)
 {
 printf(“%d “, *(a+i));
 }
 }//end of main

// function definition
 void IntSort(int n, int *a)

 { int i,j, temp=0; // i for outer loop j for inner loop and temp for swapping
 for (i=0; i< n-1; i++) // last value need not be sorted
 {
 // find the smallest of remaining numbers and exchange it with
 for (j=i+1; j< n; j++)
 {
 if (*(a+j) < *(a+i))
 { // swap
 temp=*(a+i);
 (a+i)=(a+j);
 *(a+j)=temp;
 }
 }
 }
 }

/* output

 Given array 67 87 56 23 100 19 789 117 6 1
 Sorted array 1 6 19 23 56 67 87 100 117 789
 */

C & Data Structures by Practice142

3. samp3.c Write a c program using pointers to read in an array of integers and print it’s
elements in reverse orders.

// (samp3.c)Findreverse.c Program to find the reverse of elements of an array using pointers.
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
// Function prototypes
// a is one dimensional array of say 12 elements

void FindReverse(int *a,int *b, int n);
void main()
 { int i, n; // n= no of values in an array
 int *x; // x is a pointer to an array
 int *y; // y is reversed array
 printf(“how many elements in your array?<n>”);
 scanf(“%d”,&n);

 // allocate dynamic memory space using malloc()
 x=(int*)malloc(n*sizeof(int));
 y=(int*)malloc(n*sizeof(int));

// read in the array
 for (i=0;i<n;i++)
 { printf(“\n value for %d element=”,i+1);
 scanf(“%d”,x+i); // scanf need address. we have
 } // given address when we write x+i

 // call FindReverse function
 FindReverse(x,y,n);//x& y are pointers to array
 printf(“\n Given Array\n”);
 for (i=0;i<n;i++)
 printf(“%d “,*(x+i));

 printf(“\n Reversed Array\n”);
 for (i=0;i<n;i++)
 printf(“%d “,*(y+i));

}//end of main
// Fn definitions
void FindReverse(int *x,int * y, int n)
{ int i;
 for(i=0;i<n;i++)
 *(y+(n-1-i))=x[i];
} // end of FindReverse

143Pointers

/*output
how many elements in your array?<n>5
 value for 1 element=10
 value for 2 element=20
 value for 3 element=30
 value for 4 element=40
 value for 5 element=50
 Given Array
10 20 30 40 50
 Reversed Array
50 40 30 20 10 */

4. samp4.c Write a c program to find number of words, blank spaces, special characters, digits
and vowels of a given text using pointers.

//samp4.c
#include<stdio.h>
#include<conio.h>
#include<string.h>
void main()//main function
{
int i,n,b=0,w=1,sp=0,d=0,v=0;
char *ch=”Hello This is my Text (123)”;
clrscr();//for clearing the screen
n=strlen(ch);
for(i=0;i<n;i++)
//counts words and blank spaces
if(*(ch+i)==’ ‘)
{

b++;
w++;

}
//counts vowels
e l s e
if(*(ch+i)==’a’||*(ch+i)==’e’||*(ch+i)==’i’||*(ch+i)==’o’||*(ch+i)==’u’||*(ch+i)==’A’||*(ch+i)==’E’||*(ch+i)==’I’||*(ch+i)==’O’||*(ch+i)==’U’)

v++;
//counts digits
else if(*(ch+i)>=48 && *(ch+i)<=57)

d++;
//counts special characters
else if(*(ch+i)==’!’||*(ch+i)==’.’||*(ch+i)==’(‘||*(ch+i)==’)’) sp++;
printf(“\nThe given String is : \n\n%s\n”,ch);
printf(“\nThe no. of Words is: %d”,w);
printf(“\nThe no. of Blank Spaces is: %d”,b);

C & Data Structures by Practice144

printf(“\nThe no. of Digits is: %d”,d);
printf(“\nThe no. of Vowels is: %d”,v);
printf(“\nThe no. of Special Characters is: %d”,sp);
getch();
}//end of main
/* OUTPUT:
The given String is :
Hello This is my Text (123)

The no. of Words is: 6
The no. of Blank Spaces is: 5
The no. of Digits is: 3
The no. of Vowels is: 5
The no. of Special Characters is: 2
*/
5. samp5.c. Write a c program to illustrate the use of pointers in arithmetic operations.
//(samp5.c)
#include<stdio.h>
void main()//main function
{
int *a,*b,*c;
clrscr();//function for clearing the screen
printf(“\nEnter 2 numbers: “);
scanf(“%d%d”,a,b);
*c = *a + *b;
printf(“\nThe Sum of the given no.s is: %d”,*c);
*c = *a - *b;
printf(“\nThe Difference of the given no.s is: %d”,*c);
*c = *a * *b;
printf(“\nThe Product of the given no.s is: %d”,*c);
*c = *a / *b;
printf(“\nThe Division of the given no.s is: %d”,*c);
}//end of main
/*
OUTPUT:
Enter 2 numbers:
6 3

The Sum of the given no.s is: 9
The Difference of the given no.s is: 3
The Product of the given no.s is: 18
The Division of the given no.s is: 2
*/

145Pointers

6. samp6. Write a c program to compute the sum of all elements stored in an array using
pointers.

// (samp6.c)Program to find the sum of elements of an array using pointers.
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
// Function prototypes
// a is one dimensional array of say 12 elements

int FindSum(int *a, int n);
void main()
 { int i, n, sum; // n= no of values in an array
 int *x; // x is a pointer to an array

 printf(“how many elements in your array?<n>\n”);
 scanf(“%d”,&n);

 // allocate dynamic memory space using malloc()
 x=(int*)malloc(n*sizeof(int));
 // read in the array
 for (i=0;i<n;i++)
 { printf(“\n value for %d element=”,i+1);
 scanf(“%d”,x+i); // scanf need address. we have
 } // given address when we write x+i

 // call FindSum function
 sum=FindSum(x,n);//x is a pointer to array
 printf(“\n sum of elements of given array = %d “,sum);
 }//end of main
// Fn definitions
int FindSum(int *x, int n)
{ int sum=0,i;

 for(i=0;i<n;i++)
 sum+=*(x+i);
 return sum;
 } // end of FindSum
/*
output
 how many elements in your array?<n>5
 value for 1 element=10
 value for 2 element=20
 value for 3 element=30
 value for 4 element=40

C & Data Structures by Practice146

 value for 5 element=50
 sum of elements of given array = 150
*/

7. samp8.c Write a c function using pointers to exchange the values stored in the two locations
in the memory.

//(samp8.c)
#include<stdio.h>
//function prototype
void Exchange(int *,int *);
void main()//main function
{
int *number1,*number2;
printf(“\nEnter number1 :”);
scanf(“%d”,number1);
printf(“\nEnter number2 :”);
scanf(“%d”,number2);
printf(“\nNumbers entered are:\nnumber1=%d\nnumber2=%d”,*number1,*number2);
Exchange(number1,number2);
printf(“\nNumbers afterexchange:\nnumber1=%d\nnumber2=%d”,*number1,*number2);
}//end of main
void Exchange(int *num1,int *num2)//function definition of Exchange
{
int temp;
temp=*num1;
*num1=*num2;
*num2=temp;
}//end of Exchange
/*
OUTPUT:
Enter number1 :4
Enter number2 :2
The numbers entered are:
number1=4
number2=2
The numbers after exchange:
number1=2
number2=4
*/

8. samp9.c Write a c program using pointers to determine the length of a character string.
//samp9.c
#include<stdio.h>

147Pointers

#include<string.h>
#include<stdlib.h>
// function prototype declarations
int Length(char *a);
void main()
{

int count=0;
int len; // length of the string

char *x;// array of characters string
 x=(char*) malloc(10*sizeof(char));

// get a character
printf(“\nEnter a string “);
scanf(“%s”,x);
len=Length(x);
// Now display the string you have just read
printf(“\n String inputted : %s “, x);
printf(“\n length of the string : %d”, len);

}//end of main

int Length(char *a)
{ int len=0,count=0;
 while (a[count++]!=’\0')

 len++;
 return len;
}

 /*OUTPUT:
Enter a string (to stop press enter)
education
String inputted : education
length of the string *x : 9

9. addsum.Write a c program that uses a pointer as a function argument.
/*In this program we will add three numbers in a function and returns sum as a pointer to the calling
function
AddSum.c*/

#include<stdio.h>
#include<conio.h>

C & Data Structures by Practice148

void AddSum(float * x,float *y, float * z,float *total);
void main()
 {
 float x=100,y=200,z=300;
 float total;
 AddSum(&x,&y,&z,&total);
 printf(“\n Sum of three numbers x,y,and z :\n”);

printf(“%5.2f\t%5.2f\t%5.2f = %5.2f\n”, x,y,z,total);
}//end of program

void AddSum(float * x,float *y, float * z,float *total)

{ *total=(*x)+(*y)+(*z);
}

/*output
 Sum of three numbers x,y,and z :
100.00 200.00 300.00 = 600.00
Press any key to continue*/ .

10. samp11.c Write a C program to sort names in alphabetical order using a pointer.
//samp11.c
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
//fn prototype declarations
void charraysort(char *x[],int n);
void main()
{ int count = 0,n=0;

int i;
char *stg[10];
// read in the string

 stg[count]=(char*)malloc(10*sizeof(char));
printf(“\n Enter string<END> to stop>: “);
scanf(“%s”,stg[count]);
while((strcmp(stg[count],”END”)!=0))
 { count++;
 stg[count]=(char*)malloc(10*sizeof(char));
 printf(“\n Enter string<END> to stop>: “);
 scanf(“%s”,stg[count]);

}
 charraysort(stg,count);

149Pointers

printf(“\n Sorted strings\n”);
 for(i=0;i<count;i++)

 puts(stg[i]);
} // end of main
// fun definition
void charraysort(char *x[10],int n)
{ char temp[10];

 int i,j;
for (i=0;i<n-1;i++)
{

 for (j=i+1;j<n;j++)
 {

 if(strcmp(*(x+i),*(x+j))>0)
 { // swap

 strcpy(temp,*(x+j));
 strcpy(*(x+j),*(x+i));

 strcpy(*(x+i),temp);
 }

 }
 }

}// end of charraysort()

/*output
 Enter string<END> to stop>: ramesh
 Enter string<END> to stop>: gautam
 Enter string<END> to stop>: usha
 Enter string<END> to stop>: anand
 Enter string<END> to stop>: thunder
 Enter string<END> to stop>: END
 Sorted strings
anand
gautam
ramesh
thunder
usha
*/

ASSIGNMENT PROBLEMS
1 Write a program to find out sum of three numbers passed as pointers to a
 function. Function should return a pointer for the answer.
2. Write a c program to determine determinant of a matrix using pointers and
 dynamic memory allocations to matrix variables.
3. Write a c code to determine if the given matrix of order m x n is singular or not.
4 Write a c code to determine if the given matrix of order m is symmetric or not.
5. Write a c program using pointers to achieve basic calculator functions like +,-,*,
 and / operations..

C & Data Structures by Practice150

Solutions to Objective Questions
1) void pointer 2) dynamic allocation 3) heap 4) void *
5) char,int 6) & 7) TRUE 8) TRUE
9) TRUE 10) d 11) b 12) a
13) FALSE 14) d 15) d 16) b

7
STRUCTURES AND UNIONS

CHAPTER

Arrays are useful for storing data of same type for example. int or char. But in real life you will face
the need to store different data types in an array. Student record in a college contains information of
several types of data. Consider the following example, where in a college maintains student details as
records in a file;

píìÇÉåí=oÉÅçêÇ N

O

P

k~ãÉW=KKKKKKKKKKKKKKKKKKKKKKKK

ã ~êâëxN zW=KKKKKKKKKKK

qç í~ äW=KKKKKKKKKKKKKKKKK d ê~ÇÉW=KKKKKKKKKKKKKKKKK

ã ~êâëxN zW=KKKKKKKKKKK ã ~êâëxR zW=KKKKKKKKKKK

êç ää=kçKW=KKKKKKKKKKKKKKKKKKKKKKKK

 7.1 LET US DECLARE & DEFINE A STRUCTURE IN C LANGUAGE
FOR THE ABOVE RECORD IN A PHYSICAL FILE

 struct Student
 { char name[20]; // array of name with space for 20 characters

 int rollNo;
 float marks[5]; //marks as array for 5 subjects
 float total;
 char grade;
 };

 typedef struct Student StdRec; // StdRec typecasted to Student structure
 StdRec Std[5]; // array of structre of type StdRec.

 An example of structure within a structure is given below

C & Data Structures by Practice152

 struct ToDate
 { int dd;
 int mm;
 int yy;
 };

 typedef struct ToDate date;
 struct Student
 { char name[20]; // array of name with space for 20 characters

 int rollNo;
 float marks[5]; //marks as array for 5 subjects
 float total;
 char grade;
 date dt; //structure with in a structure

 };
 typedef struct Student StdRec;

 We can declare several variables of type StdRec structure.

 Ex: StdRec std1, std2, BTech[50]
 StdRec *Std; // Std is a pointer to structure StdRec.

 7.2 INITIALIZATION OF VALUES TO STRUCTURE
Once a structure has been declared data can be assigned to structure elements. If you have declared
structure as global data type below include section:

 #include<stdio.h>
 struct Student
 { char name[20]; // array of name with space for 20 characters

 int rollNo;
 float marks[5]; //marks as array for 5 subjects
 };
 typedef stru Student stdrec;
 stdrec Std; //declare one record Std

Then in void main() you can assign values
 Std = {’Govind’,5050,78,95};

If you have declared structre with in main then you have to use static.
 static Std= {’Govind’,5050,78,95};

 If you have declared an array of structure as stdrec Std[3]
 Std[3]={

 {’Govind’,5050,78,95},

153Structures and Unions

 {‘Anand’,6060,94,88}’
 {‘Gautam’7070,98,84}

 };

 7.3 FIRST PROBLEM USING STRUCTURE
Declare a structure of student as discussed above. Let your structure declare an array of marks for
three subjects and total. Calculate and print student wise total for three students.

/* arrays with in a structure. You will see how to initialize data and calculate and print student wise
totals*/

Example 7.1
//struct1.c
#include<stdio.h>
#include<stdlib.h>
// struct declaration
struct Employee
 {
 float credits[3]; // array of credits for 3 items

 //basic,da,hra etc
 float total;
 };
 typedef struct Employee emprec;
 void main()
 {
 int i,j;
 // structure initialization
 emprec Emp[3] ={

 {6000.0,700.0,800.0,0.0},
 {8000.0,980.0,650.0,0.0},
 {9800.0,760.0,660.0,0.0}

 };// total of 9 credits(3Employees x 3)

 for(i=0;i<3;i++)
 {
 for(j=0;j<3;j++)
 // we are totaling credits of i th employee
 Emp[i].total+=Emp[i].credits[j];
 }

 printf(“Employee Total \n\n”);

C & Data Structures by Practice154

 for(i=0;i<3;i++)
 printf(“Employee[%d] %5.1f\n”,i+1,Emp[i].total);
}// end of main
/*
OUTPUT:
Employee Total
Employee[1] 7500.0
Employee[2] 9630.0
Employee[3] 11220.0
*/

 7.4 INPUT AND OUTPUT USING STRUCTURES
In the following example we will consider a structure called Account. We will write a program to read
data of specified number of account holders data from key board and record them in to structure called
account
 Example 7.2 struct2.c to read data of specified number of account holders data from key board and
record them in to structure called account

 #include<stdio.h>
 #include<stdlib.h>

 // fn decl
 void ReadInput(int n);
 void WriteOutput(int n);
 // struct declaration
 struct date
 {
 int dd;
 int mm;
 int yy;
 };
 struct Account
 {
 int accNo;
 char accType;
 char name[20];
 float bal;
 struct date pdate; // date of payment
 };
 struct Account cust[100];// declare an array of 100 customers

 void main()
 {
 int n,i;

155Structures and Unions

 printf(“enter no of customers\n”);
 scanf(“%d”,&n);
 // read data into structure
 for (i=0;i<n;i++)
 ReadInput(i);
 //write output
 for (i=0;i<n;i++)
 WriteOutput(i);
 }// end of main
 // fn definitions
 void ReadInput(int i)
 {
 float bal;
 printf(“\n enter data for %d account holder”,i+1);
 printf(“\nEnter <name>:”);scanf(“%s”,cust[i].name);
 printf(“\nEnter <accNo>:”);scanf(“%d”,&cust[i].accNo);
 printf(“\nEnter <accType>:”);scanf(“ %c”,&cust[i].accType);
 printf(“\nEnter <balance>:”);scanf(“%f”,&bal);cust[i].bal=bal;
 printf(“\nEnter pdate<dd mm yy>:”);
 scanf(“%d%d%d”,&cust[i].pdate.dd,&cust[i].pdate.mm,&cust[i].pdate.yy);
 printf(“\n— — — — — — — — — — — — — ”);
}//end of ReadInput
void WriteOutput(int i)
{ printf(“\n— — — — — — — — — — — — — ”);
 printf(“\nname:”);printf(“%s”,cust[i].name);
 printf(“\naccNo:”);printf(“%d”,cust[i].accNo);
 printf(“\naccType:”);printf(“%c”,cust[i].accType);
 printf(“\nbalance:”);printf(“%f”,cust[i].bal);
 printf(“\npdate<ddmmyy>:”);
 printf(“%d/%d/%d”,cust[i].pdate.dd,cust[i].pdate.mm,cust[i].pdate.yy);
}//end of WriteOutput

/*
OUTPUT:

enter no of customers
2
enter data for 1 account holder
Enter <name>: ram
Enter <accNo>: 1001
Enter<accType>: s
Enter <balance>: 3589.50
Enter pdate<dd mm yy>: 17 2 2003
— — — — — — — — — — — — ——

C & Data Structures by Practice156

enter data for 1 account holder
Enter <name>: kiran
Enter <accNo>: 1002
Enter<accType>: s
Enter <balance>: 2000
Enter pdate<dd mm yy>: 24 5 2002

— — — — — — — — — — — — — —
— — — — — — — — — — — — — —
name:ram
accNo:1001
accType:s
balance:3589.500000
pdate<ddmmyy>:17/2/2003
— — — — — — — — — — — — — —
name:kiran
accNo:1002
accType:s
balance:2000.000000
pdate<ddmmyy>:24/5/2002

*/

 7.5 PASSING OF STRUCTURE ELEMENTS AS ARGUMENTS TO A
FUNCTION

In the following example, we will demonstrate the passing of arguments to a function. These arguments
are members of structure.

Example 7.3 struct3.c Passing of members of structure as arguments to a function.

#include<stdio.h>
#define currentyear 2000
float Increment(float sal,int year,float inc);

typedef struct
 { int day;
 int month;
 int year;
 }date;
typedef struct
 { char name[20];

157Structures and Unions

 date bdate;
 float sal;
 }emprec ;

void main()
{ float x=1000.00;
 emprec emp={“govind”,10,11,54,6000.00};
 printf(“\n name %s”,emp.name);
 printf(“\n sal prior increment %6.2f”,emp.sal);
 emp.sal=Increment(emp.sal,1940,x);
 printf(“\n sal after increment %6.2f”,emp.sal);
 } // end of main

 float Increment(float sal,int year, float inc)
 {
 if ((currentyear-year)>40)
 sal+=inc;
 else
 sal+=500.00;
 return sal;
 }
/*
OUTPUT:
name govind
sal prior increment 6000.00
sal after increment 7000.00

 7.6 PASS A STRUCTURE AS AN ARGUMENT TO A FUNCTION

In our next example you will learn how to pass a structure as an argument to a function. We will write
a program to forward structure called account to a function. Update receives structure as an argument
and returns structure to main function

Example 7.4 struct4.c Pass a structure as an argument to a function.
#include<stdio.h>
#include<stdlib.h>
// struct declaration
struct date
{
 int dd;

C & Data Structures by Practice158

 int mm;
 int yy;
};
struct Account
{
 int accNo;
 char accType;
 char name[20];
 float bal;
 struct date pdate; // date of payment
};

typedef struct Account acct;

// fn decl
acct ReadInput(acct cust);
acct Update(acct cust);
void WriteOutput(acct cust);

void main()
{
 acct cust; // create an instance of structure acct

 // read data into structure by passing structure to ReadInput()
 // that returns structure filled with data
 cust=ReadInput(cust);
 // Update status of account
 cust=Update(cust);
 //write output
 WriteOutput(cust);
 }// end of main
// fn defenitions
acct ReadInput(acct cust)
{ printf(“\n enter data for account holder”);
 printf(“\nEnter <name>:”);scanf(“%s”,cust.name);
 printf(“\nEnter <accNo>:”);scanf(“%d”,&cust.accNo);
 printf(“\nEnter <accType>:”);scanf(“ %c”,&cust.accType);
 printf(“\nEnter <balance>:”);scanf(“%f”,&cust.bal);
 printf(“\nEnter pdate<dd mm yy>:”);
 scanf(“%d%d%d”,&cust.pdate.dd,&cust.pdate.mm,&cust.pdate.yy);
 printf(“\n— — — — — — — — — — — — — —”);
 return cust;
}

159Structures and Unions

 void WriteOutput(acct cust)
{ printf(“\n— — — — — — — — — — — — — —”);
 printf(“\nname:”);printf(“%s”,cust.name);
 printf(“\naccNo:”);printf(“%d”,cust.accNo);
 printf(“\naccType:”);printf(“%c”,cust.accType);
 printf(“\nbalance:”);printf(“%g”,cust.bal);
 printf(“\npdate<ddmmyy>:”);
 printf(“%d-%d-%d”,cust.pdate.dd,cust.pdate.mm,cust.pdate.yy);
}
acct Update(acct cust)
{
 //if the balance is more than 1000.00 set accType as current(c)
 // and add 10% of balance to balance amount as Interest. Else
 //classify the account as inactive(I)
 if(cust.bal>=1000.00)
 {
 cust.bal+=cust.bal*0.1;
 cust.accType=’C’;
 }
 else
 cust.accType=’I’;
 return cust;
 }
/*
OUTPUT:

enter data for account holder
Enter <name>: ram
Enter <accNo>: 1001
Enter<accType>: C
Enter <balance>: 20000
Enter pdate<dd mm yy>: 17 2 2003
— — — — — — — — — — — — — —
— — — — — — — — — — — — — —
name:ram
accNo:1001
accType:C
balance:22000
pdate<ddmmyy>:17-2-2003
*/

C & Data Structures by Practice160

 7.7 PASS A POINTER TO A STRUCTURE AS AN ARGUMENT TO A
FUNCTION.

Now let us learn how to pass a pointer to a structure as an argument. This is important because
structure contains large amount of data and it is elegant and efficient to pass as pointer.

Example 7.5struct5.c. Pass a pointer to a structure as an argument to a function.
#include<stdio.h>
#include<stdlib.h>
// struct declaration
struct date
{
 int dd;
 int mm;
 int yy;
};
struct Account
{
 int accNo;
 char accType;
 char name[20];
 float bal;
 struct date pdate; // date of payment
};

typedef struct Account acct;

// fn decl
void ReadInput(acct *cust);
void Update(acct *cust);
void WriteOutput(acct *cust);

void main()
{
 acct cust; // create an instance of structure acct
 // read data into structure by passing a pointer to structure
 //to ReadInput().
 ReadInput(&cust);
 // Update status of account
 Update(&cust);
 //write output
 WriteOutput(&cust);

161Structures and Unions

 getch();
}// end of main
// fn defenitions
void ReadInput(acct *cust)
{ float bal;
 printf(“\n enter data for account holder”);
 printf(“\nEnter <name>:”);scanf(“%s”,cust->name);
 printf(“\nEnter <accNo>:”);scanf(“%d”,&cust->accNo);
 printf(“\nEnter <accType>:”);scanf(“ %c”,&cust->accType);
 printf(“\nEnter <balance>:”);scanf(“%f”,&bal);cust->bal=bal;
 printf(“\nEnter pdate<dd mm yy>:”);
 scanf(“%d%d%d”,&cust->pdate.dd,&cust->pdate.mm,&cust->pdate.yy);
 printf(“\n— — — — — — — — — — — — — —”);

}
 void WriteOutput(acct *cust)
{ printf(“\n— — — — — — — — — — — — — —”);
 printf(“\nname:”);printf(“%s”,cust->name);
 printf(“\naccNo:”);printf(“%d”,cust->accNo);
 printf(“\naccType:”);printf(“%c”,cust->accType);
 printf(“\nbalance:”);printf(“%g”,cust->bal);
 printf(“\npdate<ddmmyy>:”);
 printf(“%d-%d-%d”,cust->pdate.dd,cust->pdate.mm,cust->pdate.yy);
}

void Update(acct *cust)
{
 //if the balance is more than 1000.00 set accType as current(c)
 // and add 10% of balance to balance amount as Interst. Else
 //classify the account as inactive(I)
 if(cust->bal>=1000.00)
 {
 cust->bal+=cust->bal*0.1;
 cust->accType=’C’;
 }
 else
 cust->accType=’I’;

 }
/*OUTPUT:
enter data for account holder
Enter <name>: ram
Enter <accNo>: 1001

C & Data Structures by Practice162

Enter<accType>: C
Enter <balance>: 20000
Enter pdate<dd mm yy>: 17 2 2003
— — — — — — — — — — — — — —
— — — — — — — — — — — — — —
name:ram
accNo:1001
accType:C
balance:22000
pdate<ddmmyy>:17-2-2003*/

 7.8 CREATE A POINTER TO A STRUCTURE
In the next program you will learn to create a pointer to structure. For example you can declare a
pointer to structure as

struct Account
{ int accNo;

 char accType;
 char name[20];
 float bal;
 };
 typedef struct Account acct;

 acct cust , * ptr ; // ptr is a pointer to structure

 Once created you can refer to variables in a structure
 cust. name or ptr -> name
 cust. acctype or ptr -> acctype.

 We will write a program to forward pointer to structure to a function. ReadInput and WriteOutput &
Update receives pointer to structure as an argument..

Example 7.6 struct6.c to create a pointer to structure
//struct6.c

#include<stdio.h>
#include<stdlib.h>
// struct declaration
struct date
{
 int dd;

163Structures and Unions

 int mm;
 int yy;
};
struct Account
{
 int accNo;
 char accType;
 char name[20];
 float bal;
 struct date pdate;
};
typedef struct Account acct;
acct cust,*ptr; // ptr is a pointer to structure
// fn decl
void ReadInput(acct *cust); // cust is a pointer to structure
void Update(acct *cust);
void WriteOutput(acct *cust);

void main()
{
 acct cust; // create an instance of structure acct
 // read data into structure by passing a pointer to structure
 //to ReadInput().
 ReadInput(&cust); //&cust would imply address of cust i.e pointer
 // Update status of account
 Update(&cust); // we are again passing pointer
 //write output
 WriteOutput(&cust);
 }// end of main
// fn defenitions
void ReadInput(acct *cust)
{ float bal;
 printf(“\n enter data for account holder”);
 printf(“\nEnter <name>:”);scanf(“%s”,cust->name);
 printf(“\nEnter <accNo>:”);scanf(“%d”,&cust->accNo);
 printf(“\nEnter <accType>:”);cust->accType=getche();
 printf(“\nEnter <balance>:”);scanf(“%f”,&bal);cust->bal=bal;
 printf(“\nEnter pdate<dd mm yy>:”);
 scanf(“%d%d%d”,&cust->pdate.dd,&cust->pdate.mm,&cust->pdate.yy);
 printf(“\n— — — — — — — — — — — — — —”);

}

C & Data Structures by Practice164

 void WriteOutput(acct *cust)
{ printf(“\n— — — — — — — — — — — — — —”);
 printf(“\nname:”);printf(“%s”,cust->name);
 printf(“\naccNo:”);printf(“%d”,cust->accNo);
 printf(“\naccType:”);printf(“%c”,cust->accType);
 printf(“\nbalance:”);printf(“%g”,cust->bal);
 printf(“\npdate<ddmmyy>:”);
 printf(“%d-%d-%d”,cust->pdate.dd,cust->pdate.mm,cust->pdate.yy);
}

void Update(acct *cust)
{
 //if the balance is more than 1000.00 set accType as current(c)
 // and add 10% of balance to balance amount as Interst. Else
 //classify the account as inactive(I)
 if(cust->bal>=1000.00)
 {
 cust->bal+=cust->bal*0.1;
 cust->accType=’C’;
 }
 else
 cust->accType=’I’;

 }
/*
OUTPUT:

enter data for account holder
Enter <name>: ram
Enter <accNo>: 1001
Enter<accType>: C
Enter <balance>: 20000
Enter pdate<dd mm yy>: 17 2 2003
— — — — — — — — — — — — — —
output
— — — — — — — — — — — — — —
name:ram
naccNo:1001
accType:C
balance:22000
pdate<ddmmyy>:17-2-2003*/

165Structures and Unions

 7.9 PASSING ARRAY OF STRUCTURES TO A FUNCTION
In this program you will learn how to dispatch array of structures to a function ReadInput().Function
FindMax() receives array of structures but returns a pointer to structure instance which has maximum
balance. WriteOutput takes an instance of array of structure and prints the result. Function FindMax
returns a pointer to structure

Example 7.7 struct7.c. Passing array of structures to a function
#include<stdio.h>
#include<stdlib.h>
#define MAX 3
// struct declaration
struct Account
{
 int accNo;
 char name[20];
 float bal;
};
typedef struct Account acct;

// fn decl
void ReadInput(acct cust[],int n);
acct * FindMax(acct cust[],int n); // fn returns a pointer
void WriteOutput(acct *cust);// writes account details of largest account

void main()
{ int n;
 // create an instance of structure acct
 acct *cust;
 acct *max; // hold details of largest account
 clrscr();
 // read data into structure by passing a pointer to structure
 //to ReadInput().
 printf(“enter no of account holders<n>\n”);
 scanf(“%d”,&n);
 cust=(acct*)malloc(n*sizeof(acct));
 ReadInput(cust,n); // observe cust is a pointer
 // Find account holder whose balance is maximum
 max=FindMax(cust,n); // cust is a pointer
 //write output
 WriteOutput(max); // max is a pointer
}// end of main
// fn defenitions

C & Data Structures by Practice166

void ReadInput(acct cust[],int n)
{ int i;
 float bal;
 for(i=0;i<n;i++)
 {printf(“\n enter data for customer[%d]”,i+1);
 printf(“\nEnter <name>:”);scanf(“%s”,cust[i].name);
 printf(“\nEnter <accNo>:”);scanf(“%d”,&cust[i].accNo);
 printf(“\nEnter <balance>:”);scanf(“%f”,&bal);cust[i].bal=bal;
 printf(“\n—————————————————”);
 }
}
 void WriteOutput(acct *cust)
{ printf(“\nDetails of the account with maximum balance “);
 printf(“\nname:”);printf(“%s”,cust->name);
 printf(“\naccNo:”);printf(“%d”,cust->accNo);
 printf(“\nbalance:”);printf(“%g”,cust->bal);

}

acct * FindMax(acct cust[],int n)
{ // find index of customer whose balance is maximum
 int max=cust[0].bal;
 int i,j=0;

 for(i=1;i<n;i++)
 {
 if (max<cust[i].bal)
 {
 max=cust[i].bal;
 j=i; // store the index
 }
 }
 // rerurn the pointer to account with max balance
 return &cust[j];
}
/*
OUTPUT:

enter no of account holders<n>
3
enter data for customer[1]
Enter <name>:ram
Enter <accNo>:1001
Enter <balance>:2000
— — — — — — — — — — — — — —

167Structures and Unions

enter data for customer[2]
Enter <name>:suresh
Enter <accNo>: 1003
Enter <balance>:1000
— — — — — — — — — — — — — —
enter data for customer[3]
Enter <name>:srinu
Enter <accNo>:1002
Enter <balance>:3000
— — — — — — — — — — — — — —
Details of the account with maximum balance
name:srinu
accNo:1002
alance:3000
*/

 7.10 SORTING AN ARRAY OF STRUCTURES
In this program you will learn how to dispatch array of structures to a function ReadInput().Function
SortStru() receives array of structures sort the elements by balance.
WriteOutput takes array of structure and prints the result.

Example 7.8 struct8.c. Sorting an array of structures
#include<stdio.h>
#include<stdlib.h>
#define MAX 3
struct Account
{
 int accNo;
 char name[20];
 float bal;
};
typedef struct Account acct;

// fn decl
void ReadInput(acct cust[],int n);
void SortStru(acct cust[],int n);
void WriteOutput(acct cust[],int n);// writes account details of largest account

void main()
{ int n;
 // create an instance of structure acct

C & Data Structures by Practice168

 acct *cust;
 clrscr();
 // read data into structure by passing a pointer to structure
 //to ReadInput().
 printf(“enter no of account holders<n>\n”);
 scanf(“%d”,&n);
 cust=(acct*)malloc(n*sizeof(acct));
 ReadInput(cust,n); //cust is a pointer
 // Sort array of structures based on balance
 SortStru(cust,n);
 //write output
 WriteOutput(cust,n);
 getch();
}// end of main
// fn defenitions

void ReadInput(acct cust[],int n)
{ int i;
 float bal;
 for(i=0;i<n;i++)
 {printf(“\n enter data for customer[%d]”,i+1);
 printf(“\nEnter <name>:”);scanf(“%s”,cust[i].name);
 printf(“\nEnter <accNo>:”);scanf(“%d”,&cust[i].accNo);
 printf(“\nEnter <balance>:”);scanf(“%f”,&bal);cust[i].bal=bal;
 printf(“\n— — — — — — — — — — — — — —”);
 }
}
 void WriteOutput(acct cust[],int n)
{ int i;
 printf(“\nDetails of the account sorted on balance “);
 for(i=0;i<n;i++)
 { printf(“\n customer[%d]”,i+1);
 printf(“\nname:”);printf(“%s”,cust[i].name);
 printf(“\naccNo:”);printf(“%d”,cust[i].accNo);
 printf(“\nbalance:”);printf(“%g”,cust[i].bal);
 printf(“\n—————————————————”);
 }
}

void SortStru(acct cust[],int n)
{
 acct temp;
 int i,j;

169Structures and Unions

 for(i=0;i<n-1;i++)
 {
 for(j=i+1;j<n;j++)
 {
 if (cust[i].bal<cust[j].bal)

{ // swap cust[i] and cust[j]
 temp=cust[i];cust[i]=cust[j];cust[j]=temp;
}

 }
 }
}
/*
OUTPUT:

enter no of account holders<n>
3
enter data for customer[1]
Enter <name>:ram
Enter <accNo>:1001
Enter <balance>:2000
— — — — — — — — — — — — — —
enter data for customer[2]
Enter <name>:suresh
Enter <accNo>: 1003
Enter <balance>:1000
— — — — — — — — — — — — — —
enter data for customer[3]
Enter <name>:srinu
Enter <accNo>:1002
Enter <balance>:3000
— — — — — — — — — — — — — —
Details of the account sorted on balance
customer[1]
nname:srinu
naccNo:1002
balance:3000
— — — — — — — — — — — — — —
customer[2]
nname:ram
naccNo:1001
balance:2000
— — — — — — — — — — — — — —
customer[3]
nname:suresh
naccNo:1003
balance:1000 */

C & Data Structures by Practice170

 7.11 UNIONS

Unions are useful when memory conservation is the criteria. Union, like structure holds data types like
int, char, float etc. However , the major difference is that union holds only one data object at a time.
Union calculates which of its declarations require maximum storage requirements and allocates memory
space accordingly. It means that all the variables declared in a Union share the same memory location.

Compiler handles different memory requirements of various data types automatically but it is users
responsibility to keep track of which data type is stored at a particular instant of time. Otherwise garbage
result. The general syntax of Union is

Storage class union nametag
 {
 data member 1;

data member 2;
 } var1, var2, var3;

Let us declare a union called details to make the working clear.

union details
{
 char country[12];
 float networth;
}indian, nri;

We have declared two variables resident and nri. They are of type details. Each of the variable resident
and nri can represent either country or networth at any one particular instant of time. The country[25]
requires more storage slot 25 bytes than a float value. Therefore union allocates a block memory space
to each of the variable declared in the union. The union can be declared with in a structure. we will write
a program to declare a union within a structure.

Note that we have to keep track of the data variable that is active in the memory. For example after
ReadInput() function, the field, cust.id.accNo is active and similarly after update() again cust.id.accNo
is active. That is why we could print the same in WriteOuntput2() function. If you try to print accNO it
would print garbage. Try it out.

Methods of accessing union members are same as that of structure. As a matter of fact every thing we
discussed about structures hold good for unions as well.

In the next example, we will demonstrate the use of unions.

171Structures and Unions

Example 7.9 union1.c To demonstrate the use of unions.
#include<stdio.h>
// union declaration
union details
{
 int accNo;
 char accType;
};
//struct hold union
struct Account
{ char name[20];
 float bal;
 union details id;
};
typedef struct Account acct;
// fn decl
acct ReadInput(acct cust);
void WriteOutput1(acct cust);
acct Update(acct cust);
void WriteOutput2(acct cust);

void main()
{
 acct cust; // create an instance of structure acct

 // read data into structure by passing structure to ReadInput()
 // that returns structure filled with data
 cust=ReadInput(cust);
 // after ReadInput cust.id.accNo is active
 WriteOutput1(cust);
 // Update status of account
 cust=Update(cust);
 //After Update() function only cust.id.accType is active.
 //write output void WriteOutput2(acct cust) prints only cust.id.accType.
 WriteOutput2(cust);
 getch();
}// end of main
// fn defenitions

acct ReadInput(acct cust)
{ printf(“\n enter data for account holder”);
 printf(“\nEnter <name>:”);scanf(“%s”,cust.name);

C & Data Structures by Practice172

 printf(“\nEnter <balance>:”);scanf(“%f”,&cust.bal);
 printf(“\nEnter <accNo>:”);scanf(“%d”,&cust.id.accNo);
 printf(“\n— — — — — — — — — — — — — —”);
 return cust;
}
 void WriteOutput1(acct cust)
{ printf(“\noutput after calling ReadInput()”);
 printf(“\n\nNow cust.id.accNo is active.....”);
 printf(“\noutput<name,cust.id.accN0,cust.bal>...”);
 printf(“\n\nname:”);printf(“%s”,cust.name);
 printf(“\naccNo:”);printf(“%d”,cust.id.accNo);
 printf(“\nbalance:”);printf(“%g”,cust.bal);
}
 void WriteOutput2(acct cust)
{ printf(“\n\noutput after calling Update()”);
 printf(“\n\nNow cust.id.accType is active.....”);
 // after update() only cust.id.accType is active. Next statement is correct
 printf(“\naccType:”);printf(“%c”,cust.id.accType);
 // Next statement prints garbage as cust.id.accNo is not active after updtae()
 printf(“\n<accNo> is not active. Hence garbage out”);printf(“%d”,cust.id.accNo);
 }
acct Update(acct cust)
{
 //if the balance is more than 1000.00 add 10% of balance
 //to balance amount as Interst. Else add 20 % to balance
 if(cust.bal>=1000.00)
 {
 cust.bal+=cust.bal*0.1;
 cust.id.accType=’C’;
 }
 else
 {
 cust.bal+=cust.bal*0.2;
 cust.id.accType=’D’;
 }
 return cust;
}
/*output

 enter data for account holder
Enter <name>:ramesh

Enter <balance>:2000.00

Enter <accNo>:5050

— — — — — — — — — — — — — —

173Structures and Unions

output after calling ReadInput()

Now cust.id.accNo is active.....
output<name,cust.id.accN0,cust.bal>...

name:ramesh
accNo:5050
balance:2000

output after calling Update()

Now cust.id.accType is active.....
accType:C
<accNo> is not active. Hence garbage out4931*/

OBJECTIVE QUESTION

1. If we declare the structure inside main, then we have to specify the storage class as static True/
Fale

2. `Structures are passed to functions only by pass by reference method True/False
3. A structure can be declared with in another structure True/False
4. If function is defined as void ReadInput(acct *cust), the while passing arguments in main pro-

gram, we would write
a) ReadInput(cust); b) ReadInput(&cust);
c) ReadInput(*cust); d) ReadInput(**cust);

5 struct Account
{ int accNo;

 char accType;
 char name[20];
 float bal;
 };
 typedef struct Account acct;

 acct cust , * ptr ; // ptr is a pointer to structure
 for referring to name using pointer ptr, we would write

a) ptr.name b) ptr->name
c) ptr.name[20] d) ptr->name[20]

6 In structure definition

C & Data Structures by Practice174

 struct Account
{ int accNo;

 };
 typedef struct Account acct;

 acct cust , * ptr ; // ptr is a pointer to structure
 for referring to accNo using pointer reference to structure cust, we would write

a) cust.name b) cust->name
c) cust.name[20] d) cust->name[20]

7. Union can hold as many data objects at a time as declared in union True/false

8. In union the variable share the memory space True/false

9. Structure contains similar data types True/false

10. A variable inside a function is defined as an object of structure. Then the structure is required to
be defined as

a) external b) static
c) stack d) heap

REVIEW QUESTIONS
1. What is a structure? Describe the governing rules for declaring a structure.
2. When are array of structures used ? Declare a variable as array of structures and initialize it?
3. List out the similarities and differences between structures and unions.
4. What is the general format of a union ? Declare a union and assign values to it. Explain the

process of accessing the union members.
5. What is the structure keyword? Explain the use of dot operator? Give an example for each.
6. How are structure elements accessed using pointer ? Which operator is used? Give an ex-

ample.
7. Explain the method of passing structures as arguments in functions.
8. What is structure with in structure ? Give an example for it.

SOLVED PROBLEMS

1. Write a program to read data into a structure using. operator and print the data using
indirection operator.

//indirection.c to read data into a structure using. operator and print the data using //indirection operator.
#include<stdio.h>

struct account
{char name[10];

175Structures and Unions

 char acctype[8];
 int accno;
 float balance;
};
typedef struct account acc;

void main()
{
 acc cust,*p;
 p=&cust;
 printf(“\nEnter name:”);

scanf(“%s”,cust.name);
printf(“Enter account number:”);
scanf(“%d”,&cust.accno);
printf(“Enter account type:”);
scanf(“%s”,cust.acctype);
printf(“Enter Balnce:”);
scanf(“%f”,&cust.balance);

 printf(“\nName=%s\tAccountNo=%d\tAccount Type=%s”,p->name,cust.accno,p->acctype);
 printf(“\nBalane=%.2f”,p->balance);
}
/*Output:
Enter name:Shankar
Enter account number:1234
Enter account type:Savings
Enter Balnce:340000

Name=Shankar AccountNo=1234 Account Type=Savings
Balance=340000.00 */

2 Write a program to compute tax payable by a person as per following chart

upto 100000 nil
1,00001 to 150000 10% of amount that exceeds 100000
1,50001 to 300000 20% of amount that exceeds 150000
>300000 30 % of amount that exceeds 300000

//taxstruct.c
#include<stdio.h>

struct tax{
 char name[10];
 float salary;
 float tax;
};

C & Data Structures by Practice176

typedef struct tax account;
account acc[3]; //create 3 instances of the above structure

void computetax();

void main()
{
 int i;
 for(i=0;i<3;i++)
 {
 printf(“\nEnter name:”);
 scanf(“%s”,acc[i].name);
 printf(“\nEnter yearly salary:”);

 scanf(“%f”,&acc[i].salary);
 }

 computetax();
 for(i=0;i<3;i++)
 printf(“\nTax to be paid by %s=%.2f”,acc[i].name,acc[i].tax);
}

void computetax()
{
 int i;
 for(i=0;i<3;i++)
 {
 if(acc[i].salary<=100000)

 acc[i].tax=0;
 else
 if(acc[i].salary>100000 && acc[i].salary<=150000)

 acc[i].tax=acc[i].salary*10/100;
 else
 if(acc[i].salary>150000 && acc[i].salary<=300000)

 acc[i].tax=acc[i].salary*20/100;
 else

 acc[i].tax=acc[i].salary*30/100;
 }//end of for
}

/*Output:
Enter name:Rahul
Enter yearly salary:350000

Enter name:Ravi
Enter yearly salary:96000

177Structures and Unions

Enter name:Srinivas
Enter yearly salary:165000

Tax to be paid by Rahul=105000.00
Tax to be paid by Ravi=0.00
Tax to be paid by Srinivas=33000.00*/

ASSIGNMENT QUESTIONS

1 Write a c program to calculate student-wise total for three students using an array of structures.
2 Write a c program to add the two given complex numbers. Define function add a print with

pointers as arguments. The complex number is a structure object with real and image fields.
3 Write a C program to accept records of different states using array of structures.

The structure should contain char state, population, literary rate, and income.
Display the state whose literary rate is highest and whose income is highest.

4. The annual examination is conducted for 50 students for three subjects. Write a program to read
the data and determine the following:

a. Total marks obtained by each student.
b. The highest marks in each subject and the roll no of the student who secured it.
c. The student who obtained the highest total marks.
5. Write a C program to illustrate the comparison of structure variables.
6. Define a structure to represent a data. Use your structure that accepts two different dates in the

format mm dd of the same year. And do the following:
7. Write a C program to display the month names of both dates. Write a program to use structure

within union. Display the contents of structure elements.
8. Write a C program to illustrate the method of sending an entire structure as a parameter to a

function.
9. Write a C program to prepare marks memo of a class of students using structures.

10. Write a C program to print maximum marks in each subject along with the name of the student by
using structures. Take 3 subjects and 3 student records.

11. Write a program to read n records of students and find out how many of them have passed. The
fields are students roll-no, name, mark and Result. Evaluate the result as follows

 If marks > 35 then
Result = “pass”

 Else
Result=”fail”.

12 Write a C program to illustrate the concept of structure within structure.

C & Data Structures by Practice178

You will do well to understand the concepts and acquire the necessary programming skills. We would
like to remind the reader that any thing in italics in this text means it has been asked in the past by
University

Solutions to Objective Questions
1) true 2) false 3) True 4) b 5) b 6) a 7) False
8) True 9) True 10) a

8
FILES

CHAPTER

 8.1 INTRODUCTION TO FILES
We would come across files everywhere we go. For example, college holds a file for each of their
students. Similarly municipality, holds file, containing details of taxes to be paid by citizens. Indeed files
are so common to our lives, C language and other languages support files.

What is a file ?: File is collection of records. Fig. 8.1 shows a file named student.dat with n records
belonging to n number of students.

píìÇÉå íKÇ~í

O

k

Fig. 8.1

A record, in a physical file is a data sheet, where in details of a student are recorded. There will be as
many records as there are students. In a c file too, there will be records, again one each for a student.
Fig. 8.2 shows a record.

A record in turn contains fields. Fig. 8.2 shows a record and fields contained therein.

 Student Record 1
Name:…………… rollNo:………..
marks[1]:… marks[1]:… …..marks[5]:…
Total:……. Grade:…….

 char name[20]; // array of name with space for 20 characters
 int rollNo;
 float marks[5]; //marks as array for 5 subjects

 float total;
 char grade;

 Fig. 8.2 Record and fields

C & Data Structures by Practice180

 8.2 FILE TYPES

Files can be classified based on the way they are accessed from the memory as

Sequential File : All records are stored sequentially as they are entered. This type of file is best
suited, when we have to access all the records in sequence one after the other.
Marks processing of a class is an example.

Random Acces File : In this mode of access, a record is accessed using index maintained for this
purpose. Its like going to chapter and with in the chapter a point of interest,
using Index provide at the beginning of the book.

Direct Access File : In this mode, the records are stored based on their relative position with respect
to first record. For example, record 50 will be 50 lengths away from the address
of record 1. The main advantage of this mode of access is there is no need to
maintain indexes that would result in memory over head. The disadvantage is
that memory locations gets blocked.

C language supports both sequential and random/direct access mode.
Files can be further classified as text files or binary file. Normally, in a text file data is stored using
Ascii character code. Thus to store 1234.5, in text mode, we would need 6 character spaces i.e 48 bits,
where as if you store it in binary mode, one would save lot of memory. Hence for storing intrinsic data
of large numbers and sizes, binary mode is always preferred.

 8.3 INPUT-OUTPUT (IO)FUNCTIONS

Input and output functions are catered by standard library functions,like stdio.h, provided by the
suppliers. These functions are written for an operating system. The library functions are classified as

a) Console IO
b) Disk IO
c) Port IO

Port IO are used for input and output programming when we want to use ports for data input and output.
We will discuss in detail about high level DiskIO in the subsequent sections.
console IO : All the input and out put functions control the way input has to be fed and the way output
looks on standard output device i.e screen These IO statements are further classified as formatted and
un formatted.
Formatted IO : printf() and scanf(). We specify the format through % and escape sequences

like \n. Conversion and escape sequences have been dealt in chapter 2.
Unformatted IO : The unformatted category for input and output are shown below

Input :
getch() : gets a char from keyboard the moment its entered. We have used this
feature to make computer wait for us to enter input so that we can view the
out put in Turbo compilers.
getche() : Same as that of getch() but the character is echoed on the screen as
well.

181Files

getchar(): Gets a character and displays on to screen on pressing of the <enter>
key

gets() : Inputs the string till enter key is pressed.

Output
putch() : prints a character on to screen.
putchar() : same as putch()
puts() : displays a string.

Disk IO: This mode of operations are performed on entities called files. Usually writing on to files and
reading from the files are never done directly on to disk. Instead a buffer (a memory) is used to store
prior to writing on to file and after reading from the file. Buffering in case of Disk IO is essential for
saving access time required to access memory. DiskIO is of two types:

a) High level disk IO also called standard IO/Stream IO: Buffer management is done by the
compiler / operating system.

b) Low level disk IO also called system IO : Buffer management is to be taken care by the
programmer.

Standard IO refers to standard input and output functions. The functions supported by C language
under standard IO are objects called stdin and stdout.

Important streaming functions available under standard IO are listed in Table 8.1.The different access
modes available under text and binary modes are listed in Table 8.2. We will explain the function, usage,
and syntax through examples.

 File Handling in C. Important modes and standard Library functions

Like a normal physical file, a computer file needs to be opened, accessed(reading and writing) and
closed after use.

Table 8.1 Important streaming functions

Functions Operations
fopen() Opens a file in the mode and name specified as arguments and returns a pointer
flcose() Closes file listed in the argument
fgetc() Gets a character from file and advances pointer to next character.
getc() Gets a character from file and advances pointer
fputc() writes a character to a file character by character.
fputs() Writes the string on to file specified by arguments
fgets() Reads the string from the file
fprintf() Writes data type to file
fscanf() Reads data types from file
getw() Read an integer from file
putw() Writes an integer from a file.
fwrite() Writes a structured data specified by format to a file

Contd...

C & Data Structures by Practice182

fread() Reads a structured data specified by format from the file.
fseek() Stes the pointer to location specified in the argument.
ftell() Returns current pointer’s position
ferror() Reports errors encountered while read or write in progress
feof() Detects an end of file marker
rewind() Set the pointer to beginning of the file
rename() Renames the file specified in th eargument
remove() Removes the file

Table 8.2 Modes in file access and operations

Mode Meaning Stream file
w Open in write mode. If the file already exists it will be over writtenElse a new file will be

created .
r Open in read mode. If the file does not exist it will return a NULL pointer
a Open an existing file and append at the end .Else a new file will be created .
w+ Open in write and read mode. If the file already exists it will be over written. You can also

read the file after write.
r+ Open in read and write mode. If the file does not exist it will return a NULL pointer
a+ Open an existing file and append at the end . You can also read the file after append.Else

a new file will be created .

Mode Meaning Binary File
wb Open a binary filecwrite mode. If the file already exists it will be over written.Else a new

file will be created .
rb Open a binary file in read mode. If the file does not exist it will return a NULL pointer
ab Open an existing binary file and append at the end .Else a new file will be created .
r+b Open in binary mode for read and write. If the file does not exist it will return a NULL

pointer
w+b Open a binary file in write and read mode. If the file already exists it will be over written.

You can also read the file after write.
a+b Open an existing binary file and append at the end . You can also read the file after

append.Else a new file will be created .

Stream means reading and writing data onto and from files. These function are also called file input and
output functions. These operations and supporting functions are provided by an object called FILE. We
have to create a pointer to FILE object to access functionality.

 FILE *fp; // fp is a pointer to data object called FILE
. We will accept file name from the user interactively using the commands
 printf(“\nEnter the filename:”);
 scanf(“%s”,fname);

To open a file we would use a function fopen (). The syntax and example is shown below:
 fp= fopen(“filename”,”mode”);
 fp = fopen(“student.dat”, “w”).

183Files

This statement opens file named student.dat in write mode. To close a file after use we use flcose(file
pointer) function as shown below
 fclose(fp); // closes the file student.dat
 fcloseall() closes all the files.

8.3.1 Errors while Opening Files

You have to take care of errors that can surface while opening file. These are:
 (If fp == NULL) ; //it means file has not been opened successfully
 or
 if(ferror(fp)) ;

ferror is an object that would capture errorr and exceptions while opening the file in any of the modes.
It returns a 0 if the operation is successful. Else it returns a 1

perror(“error message”) ; It is also an object of standard IO and you can use it to display error messages.

8.3.2 Checking for End of File

We can check the end of file by calling a function feof() which will return a 1 when end of file is
reached.
 while(!feof(fp))

We can also check the end of file using a macro EOF as follows
 while(!EOF)

Example 8.1 fileop.c . This program demonstrates the various file operations like creating a file, entering
data on to file, then reading it back. in r and w modes. The functions used are are fopen,, fclose, fopen
etc.. We have also shown how to detect end of file through feof() function and error handling while
trying to open the file*/
#include<stdio.h>
#include<stdlib.h>
#include<conio.h>
#include<process.h>
void main()
{ FILE *fp; // fp is a pointer to FILE object

char c=’ ‘;
char fname[10];
printf(“\nEnter the filename:”);
scanf(“%s”,fname);
fp = fopen(fname,”w”); // open in write mode
if (fp==NULL)
 { printf(“\nCould not open the file. \n”);

exit(1);
 }

C & Data Structures by Practice184

else
 { printf(“\nEnter data.\n”);
 while((c=getchar())!=’.’)

 fputc(c,fp);
 }

fclose(fp); // close the file pointed by fp
// now let us read
printf(“\n\n”); // new line
printf(“\n Data being read from file......\n”);
fp=fopen(fname,”r”);
if(ferror(fp))
 printf(“\nUnable to open file”);
printf(“\n\n”); // new line
while(!feof(fp)) // foef() function detects the end of file

printf(“%c”,getc(fp));
 fclose(fp);
}//end of main

OUTPUT
Enter the filename:ramesh
Enter data.
hello ramesh.
 Data being read from file......
hello ramesh

fgetc() and getc() achieve same functionality. Similarly fputc() and putc() are also interchangeable. The
statements shown below : fputs() and fgets() are used to write and read strings directly. As gets() does
not add end of line,wee add a new line character at the end of string so that it can be easily read from the
file.
 int fputs(const char * stg, FILE *fp);
 char * fgets(char *stg, int len, FILE *fp);
Example of usage is : fputs(stg,fp);
 fgets(stg ,80,fp);

Example 8.2 fconcat.c This program concatenates 2 files and generates a third file. The example uses
characters as data, however it can be extended to other datatypes.*/. We have used the function to write
character by character on to file using fputc(c,fp) and read from file again character by character using
a function fgetc(c,fp); getchar() and putchar() are the functions we would use for getting information
from keyboard and printing on to screen.

#include<stdio.h>
#include<conio.h>
void main()
{

FILE *f1,*f2,*f3;

185Files

char z;
char c;
int i,n;
char f1nm[10],f2nm[10],f3nm[10];
printf(“Enter the name of the first file:”);
fflush(stdin);
scanf(“%s”,f1nm);
f1 = fopen(f1nm,”w”);
printf(“\nEnter data on to file 1.\n”);
while((c=getchar())!=’.’)
 fputc(c,f1);

 fclose(f1);
printf(“Enter the name of the second file:”);
fflush(stdin);
scanf(“%s”,f2nm);
f2 = fopen(f2nm,”w”);
printf(“\nEnter data on to file 2.\n”);
while((c=getchar())!=’.’)
 fputc(c,f1);

 fclose(f2);
printf(“Enter the name of the destination file:”);
fflush(stdin);
scanf(“%s”,f3nm);
f3 = fopen(f3nm,”w”);
f1 = fopen(f1nm,”r”);
f2 = fopen(f2nm,”r”);
while(!feof(f1))
{

z=fgetc(f1);
fputc(z,f3);

}
while(!feof(f2))
{

z=fgetc(f2);
fputc(z,f3);

}
fclose(f1);
fclose(f2);
fclose(f3);
f3 = fopen(f3nm,”r”);
while(!feof(f3))
{ z=fgetc(f3);

putchar(z);
}

C & Data Structures by Practice186

fclose(f3);
getch();

}

output
Enter the name of the first file:ramesh
Enter data on to file 1.
hello students.
Enter the name of the second file:usha
Enter data on to file 2.
how are you.
Enter the name of the destination file:gautam

hello students
how are you

Example8.3 fileop1.c. We will show you some more file operations like create for the first time, enter
data and read subsequently, rename and remove operations. It may be noted that remove() and delete()
function demonstrated in the next example is for DOS/Linux systems only and do not work for Windows
XP

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
void main()
{

FILE *fp; // fp is a pointer to FILE object
int ch;
char c=’ ‘;
char fname[10],oldname[10],newname[10];

do
{
printf(“\n**”);
printf(“\n MENU “);
printf(“\n 1.Create a file\n”);
printf(“\n 2.Enter data on to file and read the contents after entry\n”);
printf(“\n 3.Rename a file\n”);
printf(“\n 4.Remove a file\n”);
printf(“\n 5.Exit “);
printf(“\n***”);
printf(“\n Enter choice of operation: “);
scanf(“%d”,&ch);

187Files

switch(ch)
{

case 1: printf(“\nEnter the filename:”);
scanf(“%s”,fname);
strcat(fname,”.txt”);
fp = fopen(fname,”r”); // open in read mode
if(fp!=NULL) // read operation successful
{

printf(“\nFile exists..Overwrite y/n ? “);
fflush(stdin);
scanf(“%c”,&c);
if(c==’n’)

break;
}
fp = fopen(fname,”w”); //open in write mode
if(ferror(fp))

printf(“\nUnable to create new file”);
else

printf(“\nNew file created”);
fclose(fp);
break;

case 2: printf(“\nEnter the filename:”);
scanf(“%s”,fname);
strcat(fname,”.txt”);
fp = fopen(fname,”w”); //open in write mode
if(ferror(fp))

printf(“\nUnable to create new file”);
else

printf(“\nNew file created”);

printf(“Enter the characters:\n”);
while((c=getchar())!=’.’)

 fputc(c,fp);
 fclose(fp);

fp = fopen(fname,”r”);
while(!feof(fp))
 {
 printf(“%c”,getc(fp));
 }
fclose(fp);
break;

case 3: printf(“\nEnter the old filename: “);
scanf(“%s”,oldname);

C & Data Structures by Practice188

strcat(oldname,”.txt”);
fp = fopen(oldname,”r”);
if(fp==NULL)
{ printf(“\nFile does not exist”);

break;
}
printf(“\nEnter the new filename: “);
scanf(“%s”,newname);
strcat(newname,”.txt”);
if (rename(oldname, newname) == 0)

printf(“Renamed %s to %s.\n”, oldname, newname);
else

perror(“rename”);
break;

case 4: printf(“\nEnter the filename to be removed: “);
scanf(“%s”,fname);
strcat(fname,”.txt”);
fp = fopen(fname,”r”);
if(fp==NULL)

printf(“\nFile does not exist”);
else
{

remove(fname);
printf(“\nFile deleted”);

}
break;

case 5: exit(1);
}
}while (1);

}
OUTPUT
**
 MENU
 1.Create a file
 2.Enter data on to file and read the contents after entry
 3.Rename a file
 4.Remove a file
 5.Exit
**
 Enter choice of operation: 1
Enter the filename:file1
File exists..Overwrite y/n ? y
New file created

189Files

**
 MENU
 1.Create a file
 2.Enter data on to file and read the contents after entry
 3.Rename a file
 4.Remove a file
 5.Exit
**
 Enter choice of operation: 2
Enter the filename:file1
New file createdEnter the characters:
hello world.
hello world

It may be noted that for streaming input and output the object that are use are stdin and stdout. To flush
out last in character during read or write operations, we need to statement for flushing the stream
pipes. For example, for flushing input stream pipe
 fflush(stdin);

scanf(“%c”,&c);
 You can record the exception and errors occurring during and operation using
 perror(“exception during rename operation”);

8.3.3 More Streaming Functions

fprintf() : This function writes formatted data to file. The format is given as agument. The syntax and
example is shown below

fprintf(file pointer, “controlling format”, data);
 fprintf(fp,”%s”,line);

fscanf() : This function reads data written on to file using fwrite(). The format is given as agument.
The syntax and example is shown below

fscanf(file pointer, “controlling format”, data);
 fscanf(fp,”%d%s”,&no, line); // reads data on to no & line.

fseek() : This function positions file pointer to a particular position, as dictated by the arguments. The
syntax is

fseek(filepointer, offset, location);
file pointer : fp
offset in bytes : +m or –m
location :

SEEK_SET : BEGINNING OF THE FILE
SEEK_CUR : CURRENT POSITION

C & Data Structures by Practice190

SEEK_END: END OF FILE
Example : fseek(fp, -5, SEEK_CUR); // pointer is positioned – m bytes from current location.

ftell() : This function returns current position in bytes on the stream file. The syntax is
 int len = ftell(fp); // returns the bytes before current pointer.

Example 8.4 fuppercase.c. This program demonstrates the use of fprintf, fscanf, fseek, functions. It
converts all the characters entered to uppercase and writes to the same file*/

#include<stdio.h>
#include<conio.h>
void main()
{

FILE *f1;
int i,n,j;
char z,f1nm[10];
clrscr();
printf(“Enter the name of the file:”);
fflush(stdin);
scanf(“%s”,f1nm);
printf(“How many characters do you want to write:”);
scanf(“%d”,&n);
f1 = fopen(f1nm,”w”);
for(i=0;i<n;i++)
{

fflush(stdin);
z = getchar();
fprintf(f1,”%c”,z);

}
fclose(f1);
f1 = fopen(f1nm,”r+”);
for(i=0;i<n;i++)
{

fscanf(f1,”%c”,&z);
if(z>=97 && z<=122) z=z-32;
fseek(f1,-1,1);
fputc(z,f1);
fseek(f1,0,1); //fp,current position, seek set)

}
fclose(f1);
f1 = fopen(f1nm,”r”);
printf(“\n”);
for(i=0;i<n;i++)
{

191Files

fscanf(f1,”%c”,&z);
putchar(z);

}
fclose(f1);
getch();

}

Example 8.5 charstofile.c. This program copies a character array to a file. We open the file in w+

//This program reads the content of file character by character.
#include <stdio.h>
#include <conio.h>
#include <string.h>
void main()
{
 FILE *fp;
 char str1[] = “I love India”;
 char ch;
 fp = fopen(“tmp.txt”, “w+”);
 fwrite(str1, strlen(str1), 1, fp);//write a string into the file
 rewind(fp);
 do
 {
 ch = fgetc(fp);// read a char from the file
 putch(ch);
 } while (ch != EOF);
 printf(“\n”);
 fclose(fp);
}
/*output
I love India*/

Example 8.6 intar2file.c. A program to write and read an array of integer values to a file

#include <stdio.h>
#include <stdlib.h>

void main()
{ FILE *fp;
 int a[5]={10,20,30,40,50},b[5],i;
 char file[10];
 printf(“Enter a file name: “);
 scanf(“%s”,file);

C & Data Structures by Practice192

 fp = fopen(file, “wb”);
 if (fp == NULL)
 { printf(“Error opening file %s\n”, file);
 exit(1);
 }
 for(i=0;i<5;i++)

putw(a[i],fp);//puts an integer on file stream
 if (ferror(fp))
 printf(“Error writing to file\n”);
 else
 printf(“Successful write\n”);
 fclose(fp);
 fp = fopen(file, “rb”);
 if (fp == NULL)
 { printf(“Error opening file %s\n”, file);
 exit(1);
 }
 i=0;
 b[i++] = getw(fp); // gets the integer
 while(!feof(fp))
 {
 b[i++] = getw(fp);//gets an integer from file stream
 }
 if (ferror(fp))
 printf(“Error reading file\n”);
 else
 { printf(“Successful read of the file and the contents are: \n”);
 for(i=0;i<5;i++)
 printf(“%d “,b[i]);
 }
 fclose(fp);
}// end of main
/* OUTPUT
Enter a file name: file1
Successful write
Successful read of the file and the contents are:
10 20 30 40 50 */

8.3.4 Stream Functions for Writing Structures on to File

fwrite() and fread() : The structure usually comprises several type of data, like integer, char and
string etc , and storing them directly is expensive in terms of storage space requirements. Hence we
will use only binary mode only. This mode is ensured by fread() and fwrite() commands. The syntax is

193Files

 fwrite(&structobject, sizeof(sructobject), number of blocks of structobject, filepointer);
 fwrite(&std, sizeof(std),1, fp);

Similarly for reading on to structure object std, we can use
fread(&std, sizeof(std),1, fp);

Example 8.7 struct2file.c This program demonstrates the usage of fread and fwrite functions, which
are used to read and write structured data respectively. It also demonstrates the operations of functions
like fseek, rewind,ferror. The programs starts by giving two options. One is to add a record to a file.
This can be done by entering the student name and marks in 3 subjects. The second option is to display
a particular record given the index value. It does ask for the filename. The filename “student.c” is used
here.*/

/*This program demonstrates the usage of fread and fwrite functions,
which are used to read and write structured data respectively.
It also demonstrates the operations of functions like fseek, rewind,ferror*/
#include<stdio.h>
#include<stdlib.h>
struct student
{

char name[20];
float mat,sci,eng,total,avg;

};
void main()
{

FILE *fp;
struct student s1,s2;
int ch,pos,p,sz=0;

fp = fopen(“student.c”,”w”);
fclose(fp);

 while(1)
{

printf(“\n MENU “);
 printf(“\n 1.Add a record\n 2.Display nth record\n 3.Exit\n”);
 printf(“ Enter choice of operation: “);
 scanf(“%d”,&ch);

switch(ch)
{

 case 1: fp = fopen(“student.c”,”a”);
 printf(“\nEnter student name:”);
 scanf(“%s”,s1.name);

C & Data Structures by Practice194

 printf(“\nEnter student marks in the 3 subjects - maths, science and english :”);
 scanf(“%f%f%f”,&s1.mat,&s1.sci,&s1.eng);
 s1.total = s1.mat + s1.sci + s1.eng;
 s1.avg = s1.total/3;
 fwrite(&s1,sizeof(s1),1,fp);
 if(ferror(fp))

 printf(“\nError occured”);
 else

{
 printf(“\nAction successful”);
 sz++;

}
 fclose(fp);
 break;

 case 2: fp = fopen(“student.c”,”r”);
 printf(“\nEnter the position of the record to be displayed : “);
 scanf(“%d”,&p);
 if(p>sz)

{printf(“\nPosition out of bounds”);
 break;

}
 pos = (p-1) * sizeof(s2) ;
 rewind(fp);
 fseek(fp,pos,SEEK_SET);
 fread(&s2,sizeof(s2),1,fp);
 printf(“\nDetails of record %d : \n”,p);
 printf(“\nName of the student :\t%s\nMarks in each subject\n\tMaths :

\t%f\n\tScience :\t%f\n\tEnglish :\t%f”,s2.name,s2.mat,s2.sci,s2.eng);
 fclose(fp);
 break;

 case 3: exit(1);
}//end of switch

}//end of while
}//end of main

/*output

 MENU
 1.Add a record
 2.Display nth record
 3.Exit
 Enter choice of operation: 1

195Files

Enter student name:govind

Enter student marks in the 3 subjects - maths, science and english :70 80 90

Action successful
 MENU
 1.Add a record
 2.Display nth record
 3.Exit
 Enter choice of operation: 2

Enter the position of the record to be displayed : 1

Details of record 1 :

Name of the student : govind
Marks in each subject
 Maths : 70.000000
 Science : 80.000000
 English : 90.000000
Total marks : 240.000000
Average Marks : 80.000000
 MENU
 1.Add a record
 2.Display nth record
 3.Exit
 Enter choice of operation: 3*/

Example 8.8 sortfile.c This program shows you how you can sort a file.. We have defined a structure
for students and filed in the data in to structure. We have written this to file. Later, we have copied this
file into an array of student structure. We have dispatched the structure of students to a function sortstruct
to sort the structure. Finally we have written on to file, resulting in a sorted file.

/*struct to file,read the file, file to struct, struct to sort
sorted struct to file, read file*/
#include<stdio.h>
struct student
{ char name[20];

float mat,sci,eng,total,avg;
};
typedef struct student std;
std s1,s2[5];
void sortstruct(std s[],int n);

C & Data Structures by Practice196

void disprecords(int n);
void main()
{ FILE *fp;

int ch,p,sz=0,i,pos;
 float a[50]; // we need this array for sorting on average marks

fp = fopen(“student.c”,”w”);
fclose(fp);
do
 { printf(“\n MENU “);
 printf(“\n 1.Add a record\n “);

 printf(“\n 2.Display nth record\n”);
 printf(“\n 3.Display all the records\n”);
 printf(“\n 4.Sort the records\n”);
 printf(“\n 5.Exit\n”);

 printf(“ Enter choice of operation: “);
 scanf(“%d”,&ch);
 switch(ch)

 { case 1: fp = fopen(“student.c”,”a”);
 printf(“\nEnter student name:”);
 scanf(“%s”,s1.name);
 printf(“\nEnter marks in : maths, science and english :”);
 scanf(“%f%f%f”,&s1.mat,&s1.sci,&s1.eng);
 s1.total = s1.mat + s1.sci + s1.eng;
 s1.avg = s1.total/3;
 fwrite(&s1,sizeof(s1),1,fp);
 if(ferror(fp))

 printf(“\nError occured”);
 else

 { printf(“\nAction successful”);
 sz++; // keep the count
 }
 fclose(fp);
 break;

 case 2: fp = fopen(“student.c”,”r”);
 printf(“\nEnter the position of the record to be displayed : “);
 scanf(“%d”,&p);
 if(p>sz)
 { printf(“\nPosition is out of bound”);

break;
 }
 pos = (p-1) * sizeof(s2) ;
 rewind(fp);
 fseek(fp,pos,SEEK_SET);

197Files

 fread(&s1,sizeof(s1),1,fp);
 printf(“\nDetails of record %d : \n”,p);
 printf(“\nName of the student :\t%s\nMarks in each subject\n\tMaths :

\t%f\n\tScience :\t%f\n\tEnglish :\t%f”,s1.name,s1.mat,s1.sci,s1.eng);
 printf(“\nTotal marks :\t%f\nAverage Marks :\t%f”,s1.total,s1.avg);
 fclose(fp);
 break;

 case 3: disprecords(sz);
 break;

 case 4:
 printf(“\nSorting by average....\n”);
 fp = fopen(“student.c”,”r”);
 for(i=0;i<sz;i++)
 fread(&s2[i],sizeof(s1),1,fp);
 fclose(fp);
 sortstruct(s2,sz);
 // write the sorted structure on to file
 fp = fopen(“student.c”,”w”);
 for (i=0;i<sz;i++)

fwrite(&s2[i],sizeof(s1),1,fp);

 fclose(fp);
 // now read and display

 disprecords(sz);
 break;

 case 5: exit(0);
 }

 } while (ch<ch<1 || ch>5);
}// end of main
// function definitions
void sortstruct(std s[],int n)
{ std temp;
 int i,j;
 for(i=0;i<n-1;i++)
 {
 for(j=i+1;j<n;j++)
 {
 if (s[i].avg<s[j].avg)

 { // swap s[i] and s[j]
 temp=s[i];s[i]=s[j];s[j]=temp;
 }
}

 }
}// end of sortstruct

C & Data Structures by Practice198

void disprecords(int n)
{ FILE *fp1;
 int i;
 fp1 = fopen(“student.c”,”r”);
 printf(“\nName Mathematics Science English Total Average”);
 for(i=0;i<n;i++)
 { fread(&s1,sizeof(s1),1,fp1);
 printf(“\n%s %5.2f %5.2f %5.2f %5.2f
 %5.2f”,s1.name,s1.mat,s1.sci,s1.eng,s1.total,s1.avg);
 }
 fclose(fp1);
}
OUTPUT
 MENU
 1.Add a record
 2.Display nth record
 3.Display all the records
 4.Sort the records
 5.Exit
 Enter choice of operation: 1
Enter student name:s1
Enter student marks in the 3 subjects - maths, science and english :67 77 87
Action successful
 MENU
 1.Add a record
 2.Display nth record
 3.Display all the records
 4.Sort the records
 5.Exit
 Enter choice of operation: 1
Enter student name:s2
Enter student marks in the 3 subjects - maths, science and english :77 88 98
Action successful
 < MENU>
Enter choice of operation: 2
Enter the position of the record to be displayed : 2
Details of record 2 :
Name of the student : s2
Marks in each subject
 Maths : 77.000000
 Science : 88.000000
 English : 98.000000
Total marks : 263.000000

199Files

Average Marks : 87.666664
 < MENU>
Enter choice of operation: 3
Name Mathematics Science English Total Average
s1 67.00 77.00 87.00 231.00 77.00
s2 77.00 88.00 98.00 263.00 87.67
< MENU>
Enter choice of operation: 4
Sorting by average....
Name Mathematics Science English Total Average
s2 77.00 88.00 98.00 263.00 87.67
s1 67.00 77.00 87.00 231.00 77.00

 8.4 COMMAND LINE ARGUMENTS

We have learnt how to pass the values to a function through the arguments. But how do we pass
arguments to void main() i.e our main function. It is through command line arguments. Till now, we
have been obtaining the file names from the user with statement
 printf(“\enter file name”); and scanf(“%s”,filename);

Now suppose, we have two files with names BTech.dat and MTech.dat with students marks. Further, a
source program, say process.c is available that can process the either of data files BTech.dat and
MTech.dat as required and declare results through a file called resuts.dat. Then we can use command
line arguments as shown below:

 C:>\tc\bin>process MTech.dat result.dat
Or

 C:>\tc\bin>process BTech.dat result.dat

For command line arguments to wotk:
 void main(argc, argv[])
 {
 int argc; // counter for arguments

 int *argv[]; // arguments list.
 ……

 ……….
 }
In the example shown :argc = 3
 argv[0] = process argv[1] = MTech.dat argv[2] = result.dat

Command line arguments facilitate us o use program name i.e process directly from command prompt
instead of from C language development environment called integrated development environment(IDE).
for this facility, compile the program and use build option or mak option. With this we will be making

C & Data Structures by Practice200

a exe version or mak version i.e process.exe or process.mak. Then use C:>\tc\bin>process MTech.dat
result.dat

Example 8.9 cmdline.c. In this example, we would accept program name, input file name and output
file name as arguments. We would copy the input file to out put file after conversion of each character to
an upper case.
//cmdline.c A program to copy from a source text to destinations
//after converting to upper casetext
#include<stdio.h>
#include<stdlib.h>
#include<ctype.h>
void main(int argc,char * argv[])
{

char c;
FILE *fp1,*fp2;
printf(“file1=%s\n”,argv[1]);
printf(“file2=%s\n”,argv[2]);
fp1 = fopen(argv[1],”r”);
if (fp1 == NULL)
{

printf(“ 1 Error opening file \n”);
exit(1);

}
else
{

fp2=fopen(argv[2],”w”);
if (fp2 == NULL)
{

printf(“2 Error opening file\n”);
exit(1);

}
else
 while((c=fgetc(fp1))!=EOF)

putc(toupper(c),fp2);
printf(“successful copy operation\n”);

}
} // end of main

/*
Execution:
In the command prompt
C:\TC> cmdline a.c b.c

OUTPUT:
file1 = a.c
file2 = b.c
Successful copy operation.
*/

201Files

OBJECTIVE QUESTIONS

1 Based on the access technique Files in C language can be classified as ———————————
————————— ———————————— files.

2 Text mode file takes ————— many bytes to store a number 12345.6
a) 5 b) 6
c) 7 d) 8

3. The library file are classified as ————————————— , ———————— and ——
——————————.

4. getchar() reads data from
a) file b) keyboard as soon as it is entered
c) keyboard but on enter d) file till EOF

5. fscanf () read data from
a) file b) disk
c) keyboard

6. EOF marker can be used to check end of file while reading
a) integer data types b) character based IO
c) float data types d) all data types

7. fopen returns on failure to read a) 0 b) 1 c) -1 d) NULL.
8. A file with a+ mode can be

a) only append b) read and write at end
c) only read d) only write

9 EOF returns
a) 1 b) -1
c) 0 d) none of the above

10. In command line arguments char *argv[] is
 a) list of arguments b) count of arguments

c) program name d) command
11 To capture errors during file operations the function that can be used

a) ferror() b) fgets
c) perror d) feof()

12 To detect end of file marker for formatted file the function that can be used is
a) ferror() b) fgets
c) perror d) feof()

13 fread and fwrite function can be used for writing data in
a) text files b) binary files
c) both a & b d) Ascii files

14 In a file opened with r + mode, if fopen is unable to open file it will return
a) 1 b) -1
c) NULL d) 0

15 File opened with w+b mode is for
a) binary and read write b) read write
c) binary and write b) none

C & Data Structures by Practice202

REVIEW QUESTIONS

1. What are files and why they are required?
2. What are formatted and unformatted IO?
3. How do you use feof() and EOF functions to detect the end of file
4. Explain input and output statements available in unformatted segment
5. Explain input and output statements available in formatted segment
6. What is consoleIO?.
7. What is dic IO?
8. Explain syntax and working of string handling functions available in standard library.
9. Explain the character handling functions in standard library.
10. Explain getw() and putw() statements.
11 Describe w and w+ and w+b modes.
12 Why binary files occupy less memory space.
13 Explain fseek() and ftell() functions.
14 What are the likely errors while file handling. Explain the statements with syntax.
15 Explain fwrite() and fread() statement.
16. Explain fprintf() and fscanf() statement
17. Explain usage of command line arguments with example.

SOLVED EXAMPLES

1. Write a program to count the words in a file and list them
//fstring.c. This program list words from the file and gives a count of word.

#include<stdio.h>
void main()
{ FILE *fp;

 int i,j,k,count=0;
 char c;

 char str[50][20];
 char stg[]=”HELLO WORLD HOW ARE WE TODAY”;
 fp=fopen(“thunder.txt”,”w”);
 fputs(stg,fp);

 i=0;
 j=0;
 fclose(fp);
 fp=fopen(“thunder.txt”,”r”);

203Files

fseek(fp,0,SEEK_END);
k=ftell(fp);

 printf(“size of file in bytes is=%d”,k);
rewind(fp);
while((c=fgetc(fp))!=EOF)
 { if(c!=’ ‘&& c!=’\n’ && c!=’;’)

 { str[i][j]=c;
 j++;
 }

 else
{ str[i][j]=’\0';
 j=0;
 i++;
}

 }
 count=i;

 for(j=0;j<i;j++)
 { printf(“\n”);

 printf(“%s”,str[j]);
 }

 printf(“\n Number of words : %d\n”,count);
}// end of main
/*Output:
size of file in bytes is=28
HELLO
WORLD
HOW
ARE
WE
Number of words : 5*/

2. Write a program to count the number of vowels in a file
//fvowels.c This program counts the number of vowels in a file
#include<stdio.h>
#include<ctype.h>
void main()
{ FILE *fp;
 char c;
 int k=0;
 char stg[]=”be kind to human beings and animals”;
 fp=fopen(“thunder.txt”,”w”);
 fputs(stg,fp);
 fclose(fp);

C & Data Structures by Practice204

 fp=fopen(“thunder.txt”,”r”);
 while((c=fgetc(fp))!=EOF)

{ c=toupper(c);
 if(c==’A’||c==’E’||c==’I’||c==’O’||c==’U’)

k++;
}

 printf(“Number of vowels in the file =%d\n”,k);
 fclose(fp);
}// end of main
/*Output:
Number of vowels in the file =11*/

3. Write a program to copy a file from source to destinations.
//fcopy.c
#include<stdio.h>
#include<stdlib.h>
void main()
{ char c;

char file1[10],file2[10];
FILE *fp1,*fp2;
printf(“Enter input file name: “);

 scanf(“%s”,file1);
printf(“Enter output file name: “);

 scanf(“%s”,file2);
 fp1 = fopen(file1, “r”);
 if (fp1 == NULL)

{ printf(“Error opening file \n”);
 exit(1);
 }

else
{ fp2=fopen(file2,”w”);

if (fp2 == NULL)
{ printf(“Error opening file\n”);

 exit(1);
}

 else
 while((c=getc(fp1))!=EOF)
 putc(c,fp2);

 printf(“successful copy operation\n”);
 }
} // end of main
OUTPUT
Enter a input file name: file2filecopy.c

205Files

Enter output file name: f1.c
successful copy operation
Press any key to continue

4. Write a program to copy a two dimensional matrix on to file and read and display the matrix.
//intarrasfile.c. A program to write an array of integer
//values to a file and reads it back
#include <stdio.h>
#include <stdlib.h>
void main()
{ FILE *fp;
 int a[2][5]={10,20,30,40,50,

 60,70,80,90,100}; // a ia a 2x5 matrix
 int i,j,temp;
 char file[10];
 printf(“Enter a file name: “);
 scanf(“%s”,file);
 fp = fopen(file, “w+”);
 if (fp == NULL)
 { printf(“Error opening file %s\n”, file);
 exit(1);
 }
 for(i=0;i<2;i++)

 for(j=0;j<5;j++)
 putw(a[i][j],fp);//puts an integer on file stream

 if (ferror(fp))
 printf(“Error writing to file\n”);
 else
 printf(“Successful write\n”);
 fclose(fp);
 fp = fopen(file, “r”);
 if (fp == NULL)
 {
 printf(“Error opening file %s\n”, file);
 exit(1);
 }
 printf(“Successful read of the file and the contents are: \n”);
 for(i=0;i<2;i++)
 {

 for(j=0;j<5;j++)
{ temp = getw(fp);

 printf(“%d “, temp);
}

C & Data Structures by Practice206

printf(“\n”);
 }
 fclose(fp);
 }// end of main

/* OUTPUT
Enter a file name: file1
Successful write
Successful read of the file and the contents are:
10 20 30 40 50
60 70 80 90 100
Press any key to continue
*/
5. Write a program to copy array of characters (n number of strings) on to file. Also display the

contents of file.
//stgfile.c. This program reads the content of file character by character.
#include <stdio.h>
#include <conio.h>
#include <string.h>
void main()
{ FILE *fp;
 char stg[20];
 fp = fopen(“stg.dat”, “w+”);
 if (fp==NULL)
 { printf(“\n Sorry could not open stg.dat”);
 exit(1);
 }
 printf(“\n Enter a string <END> to stop\n”);
 gets(stg);
 while(strcmp(stg,”END”))

{ //strcat(stg,”\n”); // add a new line character
 fputs(stg,fp);

 // fwrite(stg, strlen(stg), 1, fp);//write a string into the file
 printf(“\n Enter a string <END> to stop\n”);

 gets(stg);
}

 // now read and display the file
 rewind(fp);
 while(!feof(fp))

{ fgets(stg,19,fp);
printf(“\n%s\n “, stg);

 }
 fclose(fp);
}// end of main

207Files

/*output
 Enter a string <END> to stop:HELLO
 Enter a string <END> to stopHOW
 Enter a string <END> to stopARE
 Enter a string <END> to stopYOU?
 Enter a string <END> to stopEND
HELLOHOWAREYOU?*/

6. Write a program to update Inventory record on a file. Use structure to write on to file and
updating the file. Inventory record contains part name and value

// fileupdate.c. A program to update record
#include<stdio.h>
#include<stdlib.h>
struct Inventory
{ char name[20];

float val;
};
typedef struct Inventory item;
item part;
// fn prototypes
void disprecords(int n);
void main()
{ FILE *fp;

int ch,p,sz=0,pos;
fp = fopen(“inventory.dat”,”w”);
fclose(fp);
do
{ printf(“\n MENU “);
 printf(“\n 1.Add a record\n “);

 printf(“\n 2.Display nth record\n”);
 printf(“\n 3.Display all the records\n”);
 printf(“\n 4.Update the records\n”);
 printf(“\n 5.Exit\n”);

 printf(“ Enter choice of operation: “);
 scanf(“%d”,&ch);
 switch(ch)
 {
 case 1:
 fp = fopen(“inventory.dat”,”a”);
 printf(“\nEnter item name:”);
 scanf(“%s”,part.name);
 printf(“\nEnter value of item:”);
 scanf(“%f”,&part.val);

C & Data Structures by Practice208

 fwrite(&part,sizeof(part),1,fp);
 if(ferror(fp))

 printf(“\nError occured”);
 else

{
 printf(“\nAction successful”);
 sz++;
}
fclose(fp);
break;

case 2:
fp = fopen(“inventory.dat”,”r”);
printf(“\nEnter the position of the record to be displayed : “);
scanf(“%d”,&p);
if(p>sz)
{ printf(“\nPosition is out of bound”);

break;
}
pos = (p-1) * sizeof(part) ;
rewind(fp);
fseek(fp,pos,SEEK_SET);
fread(&part,sizeof(part),1,fp);
printf(“\nDetails of record......”);
printf(“\n%s\t%5.2f\n”,part.name,part.val);
fclose(fp);
break;

case 3:
disprecords(sz);
break;

case 4:
printf(“\nupdating record....\n”);
fp = fopen(“Inventory.dat”,”r+”);
printf(“\nEnter the position of the record to be updated: “);
scanf(“%d”,&p);
if(p>sz)
{ printf(“\nPosition is out of bound”);

break;
}
pos = (p-1) * sizeof(part) ;
rewind(fp);
fseek(fp,pos,SEEK_SET);
// now read the record
fread(&part,sizeof(part),1,fp);

209Files

printf(“\nbefore update %s\t%5.2f\n”,part.name,part.val);
// get updated details from the user
printf(“\nEnter item name:”);

 scanf(“%s”,part.name);
 printf(“\nEnter value of item:”);
 scanf(“%f”,&part.val);

// now we have to write on to same position
 rewind(fp);

fseek(fp,pos,SEEK_SET);
fwrite(&part,sizeof(part),1,fp);

 if(ferror(fp))
 printf(“\nError occured”);

 else
 printf(“\nUpdate action successful”);
fclose(fp);
disprecords(sz);
break;

case 5: exit(0);
}

 } while (ch<ch<1 || ch>5);
}
// function definitions
void disprecords(int n)
{ FILE *fp1;

int i;
 fp1 = fopen(“inventory.dat”,”r+”);

fseek(fp1,0,SEEK_SET);
printf(“\nPart Name value\n”);
for(i=0;i<n;i++)
{ fread(&part,sizeof(part),1,fp1);

 printf(“\n%s %5.2f\n”,part.name,part.val);
}
fclose(fp1);

}
/*output
 <MENU>
 1.Add a record
 2.Display nth record
 3.Display all the records
 4.update the record
 5.Exit
 Enter choice of operation: 1
Enter item name:motor

C & Data Structures by Practice210

Enter value of item:1000.00
Action successful
<MENU>
 Enter choice of operation: 1
Enter item name:pump
Enter value of item:1500.00
Action successful
<MENU>
 Enter choice of operation: 1
Enter item name:pipes
Enter value of item:1700.00
Action successful
<MENU>
 Enter choice of operation: 2
Enter the position of the record to be displayed : 2
Details of record......
pump 1500.00
<MENU>
 Enter choice of operation: 3
Part Name value
motor 1000.00
pump 1500.00
pipes 1700.00
<MENU>
 Enter choice of operation: 4
updating record....
Enter the position of the record to be updated: 2
before update pump 1500.00
Enter item name:monopump
Enter value of item:2000.00
Update action successful
Part Name value
motor 1000.00
monopump 2000.00
pipes 1700.00
 */

ASSIGNMENT PROBLEMS

1 Write a program to merge two files into a third file. Each file holds specified number of strings.
2 Write a program to print telephone directory. Use structure to create the directory and the file.
3. Write a program to sort the file that holds a specified number of integers.

211Files

4. Develop a C program that would store the details of electrical consumption by a customer in two
files, namely customer.dat that stores id number, name,poll no, address and a second file that
stores id number,custbill no, dtae and amount. The program must have facilities for

a) data entry on to rwo file.
b) display the full details on customer id number.
c) display all records.
d) Update a record
e) delete a record. (Hint : mark a flag field to 1 to indicate that its deleted)

5. Write a c program to encode the file. Read input from a file1.Encode the text replacing the charac-
ter with next character. For example a will be replaced by b and z will be replaced with A. Similar
scheme can be used for capitals and numbers form 0 to 9.

 a) Write code for encoding and writing on to a file.
 b) decode and read the file.
 c) Compare with the original file and say if decoding is indeed correct.
 (hint : check bytes and character by character

Solutions to Objective Questions
1) sequential random direct 2) c 3) consoleIO,DiskIO,and portIO.
4) c 5) a 6) b 7) d 8) b 9) b 10) a

11) a 12) d 13) b 14) c 15) a

This page
intentionally left

blank

9
LINEAR DATA STRUCTURES

CHAPTER

 9.1 INTRODUCTION TO DATA STRUCTURES

What is a data structure? Why we have to use data structures ? These questions often trouble many a
student. We intend in this chapter, to give you basic understanding concepts behind data types, data
structures, prior to taking up linear data structures called linked lists.
Why use data structure?
Many of the operations and data encountered in daily life can not be directly mapped to digital
computer so that programmers can develop solutions. For example consider students record held at
college administration, that contain several data values such as name, number, and attendance etc.
Data structure called structure afforded by C language solves this problem efficiently. Similarly problem
of finding shortest path amongst cities can best be solved when graph theory, a mathematical tool is
employed. This problem can best be solved when Graph can be viewed as Adjacency Matrix, a two
dimensional data structure. Therefore, we can say that programmers ability to convert a concept in to
data structure is of paramount important for efficiency.
What are data structures?
Firstly you are aware that when you write a code and declare variables, these variables are stored in
program’s temporary storage (stack area) and permanent values are committed to files. Often, program
has to refer to these variable while executing the program and hence they are to be accessed from the
memory efficiently. So how they are stored organized in memory is important to us.
Secondly, you are familiar with data types a language uses. For example int, float, double are some of
the data types you have been using in the code you have developed. We have further learnt that a data
type has a permitted range. For example unsigned int has a range of 0 to 65535. In addition, operations
allowed on int data types such as addition, subtraction, multiplication etc have been explored by you.
Hence we can define data type as permitted data values and allowable operations on these variable.
Simple data types can be used to build new data types, for example enumerated data types.
Now, we are ready to define data structure as organized data and allowed operations. Array is one of
the standard data structure provide by the language and it can be used to define more complex data
structures for example a data structure called structure provided by C language.. Array allows us to
define memory allocation and storing of data values a type, where as structures allows us to store data
values of different data type as a single storage unit. Both arrays and structures are static in nature in that

C & Data Structures by Practice214

storage is required to be defined prior to compilation stage it self and actual exploitation of memory
becomes evident only at the time of execution time. Thus we need data structures that are more suitable
for handling dynamic data collections.
We can classify the data structures in several ways

a) Linear / Non linear data structures. Linear data structures organize the data in a sequential
order, like you store data on to arrays. Non Linear data types store the data values in such a
fashion so that relation ships can be exhibited. Trees and Graphs are examples of non linear
data structures. In trees, for example, we can depict an organizations hierarchy.

b) Homogenous/Non homogenous data structures. Arrays which store same data types are called
homogenous data structures while structures of C language can be called non homogenous
data structures.

c) Static and dynamic data structures. The memory locations and sizes of static data structures
are fixed at compile time itself while they are dynamically allotted at run time in case of
dynamic data structures.

The type of data structure to be used in a program depends on factors such as program execution time
and storage space. We will learn more about complexity of algorithms in chapter on Searching and
Sorting. Several of day to day problems can be solved by using abstract data types such as linked lists,
queues, stacks etc. In this chapter linear data structures called linked lists are introduced.

 9.2 SINGLE LINKED LISTS
9.1 Linked List are used extensively in Computer Science applications, for example, in maintaining

databases, operating system etc. Linked Lists use dynamic storage i.e instead of allocating space
at compile time, as is done in the case of arrays, while using Linked Lists you can allocate space
at run time depending on actual need. Thus linked list is a superior data structure.

^
eb^a

a~í~

mç áå íÉ ê=íç =kÉñí=åçÇÉ

_ ` a

kìää

q^ fi

Fig. 9.1 Linear linked list

In the above Fig. A is header node and is predecessor of B.C is a successor of B D is a tail
node.

9.2.1 How to Define a Node
A node will have data assigned to it and a pointer to its successor.
Newnode is the name of the node.

215Linear Data Structures

åÉñí
Ç~ í~

åÉï=åçÇÉ=éçáå íÉê

åÉï =åçÇÉ

Fig. 9.2 New node structure

struct LinkedList
 { int data ;
 struct LinkedList * next ; // *next is a pointer to next node
 }; // This type of definition is called self
 referential structure.

 typedef struct LinkedList node; // we will be able to use short name “node”

 9.3 LINKED LISTS FUNCTIONS
9.3.1 How to Create a New Node? We want to create a new node with name newnode and assign
data and next pointer pointing to null. This newnode thus created will be passed as an argument to
function to create linked list. Obtain data for new node and assign data and next pointer to NULL.

 C module is given below:

 node *newnode; // declaration of newnode of structure node
 printf (“enter new node data\n”);
 scanf(“%d”, & data);
 // allocate space for new node. malloc () allocates space of size of node and
 // returns a pointer of type node to newnode
 newnode= (node*) malloc (size of (node));
 newnode data = data ; // you have assigned data
 new node next = NULL ; // assign next to NULL
 // now we will call our AddFront function which will add newnode in
 //linkedlist.

9.3.2 Function AddFront (node ** font, node *newnode) accepts newnode and data as
arguments and adds it in the front of the list. If the list is empty it will add as first element.
Observe that we have passed ** front, which is a pointer to pointer because we are
adding newnode as first node and we may be required to delete first node as well. As the
first node is address for the entire Linked List, addition or deletion of as first element
would change address. Hence we have chosen a pointer-to-pointer. Further as a learning
exercise pointer to pointer concept is worth mastering.

C & Data Structures by Practice216

åÉïãçÇÉ

O

N

G=Ñêçå í

Fig. 9.3 Adding a node in the front of a linked list

 void AddFront (node ** front, node *new node)
 {
 // make new node as fist node. // next to point to * front

 newnode next = * front ; // ref 1 in above fig
 * front = newnode ; // ref 2. Now you made newnode to be known as * front.
 }

9.3.3 In this module functions, int DeletePos (node ** front, int pos) and int

DeleteElm(node ** front, int data), we will delete node from linked list given a position. Function
will return 1 if successful in deleting else it will return 0 to main function.

éêÉî Åìê

N

OTKU

åÉñí

Fig. 9.4 Linked list showing prev,cur,cur->next nodes

01. Locate the position to be deleted by traversing the List. Traversal can be based on
finding position or finding a value of a node to be deleted. Cur is the node to be
deleted.

02. Point prev next to current next. Refer 1 in fig 9.4
03. Delete current node. We have to check if the node we are deleting is the first node.

If yes we have to readjust the front pointer.

Now we will write a function modules int DeletePos and int DeleteElm. Both functions accept node
** font and, pos/data. Remember front is a pointer to pointer. Hence we will pass it as &front i.e front

217Linear Data Structures

is a pointer (address) and &front would make it pointer to pointer. Traversal of the Linked List takes us
to desired node whose position or data values matches with argument passed. Function returns 1 on
successful deletion. Else it will return a 0.
/* deletes at pos. first element is 0. fn returns 0 if no element at given pos*/

 int DeletePos(node ** front, int pos)
 { node *cur,*prev; // declare two pointers
 //check if the node to be deleted is the first node
 i f (pos==0) // delete first node
 { cur= * front; // store first node in cur for deletion later.
 * front=(*front)->next; // shift header to next node
 }
 else
 { int i=0;
 cur=* front; // store in cur. We will use cur for traversal.
 while(i< pos && cur) //| cur!=NULL
 {

 prev=cur; //store it in prev. You will need prev for pointer readjustment
 cur=cur->next; // go to next node
 i++;

 }
 /* check if element at given pos exists*/
 if(cur)

 prev->next=cur->next; // point prev node to cur next node
 }

 if (cur)
 { free(cur); // delete cur node
 return 1; // successful deletion
 }
 else
 return 0; // deletion failed
 }// end of DeletePos ()

 9.3.4 DeleteElm deletes a node whose data field is given
 returns 0 if no element is found
 int DeleteElm(node ** front, int data)
 { node *cur,* prev;
 // traverse to find required node
 cur=*front;
 while(cur&& cur->data!=data)
 { prev=cur; // save cur in prev
 cur=cur->next;

C & Data Structures by Practice218

 }
 // if the element is found
 if (cur)
 { // if its first element

if(cur==*front)
 *front=(*front)->next;
else
 prev->next=cur->next;

 free(cur);
return 1;

 }
 else
 return 0;
 }// end of DeleteElm

9.3.5 Erasing of Linked List. We will write a module to erase the linked list completely. We will pass
*front as argument because we are erasing the Linked list totally.
void EraseList(node * front)
 {
 node *cur = front; // cur, we will use for traversal
 while(cur)
 { front=front->next; // front points to next node in the list
 free(cur); //delete the node
 }
 }// end of erase list

9.3.6 GetChoice () Many a time, we will need a function to get choice from the user. You will also
need a function to obtain data for a new node. Further you will need to display the Linked List. Use these
modules.

int GetChoice ()
 { int choice ;
 do
 { printf(“1. Insert at beginning of the Linked List \nx”);
 printf(“2 Delete an element at given position \n”);
 printf (“3 Delete an element at given position \n”);

 printf (“4 Display the Linked List \n”);
 printf (“5 Quit \n”);
 printf (“\n Enter your choice.. \n);
 scanf(“%d”, &choice);

 } while(choice <1 || choice >6); // continue loop
 }//end of GetChoice

9.3.7 int GetData ()
{ int data;

219Linear Data Structures

 printf(“ Enter data for the node\n”);
 scanf(“%d”, & data);

 return data;
}//end of GetData()

9.3.8 void DispalyList (node * front)
 { node * cur;
 cur = front ; // cur is the node for traversal
 printf(“\u the list is ……\n”);
 if (!cur)
 printf(“the list is empty ln”);
 else
 {
 while (cur)

 { printf (“%d”, cur data);
 if (cur next) ; next node exists

 print f(“ “);
 cur = cur next ; // go to next node
 }

 }
 } // end of DisplayList()

Example 9.1 list1.c Here comes the complete program.

// single Linked List
#include<stdio.h>
#include<stdlib.h>
struct LinkedList
{ int data;
 struct LinkedList * next;
};
typedef struct LinkedList node;
// declarations of function prototypes
void AddFront(node **front, node *newnode);
int DeletePos(node **front, int pos);
int DeleteElm(node **front, int data);
void EraseList(node *front);
int GetData();
int GetChoice();
void DisplayList(node *front);

int main()
 {
 node* front = NULL;

C & Data Structures by Practice220

 node *newnode;
 int data,pos;
 while(1)

{ switch(GetChoice())
 { case 1:

 {
 data=GetData();

 newnode=(node*) malloc(sizeof(node));
 newnode->data=data;
 AddFront(&front,newnode); //&front is a pointer to pointer
 DisplayList(front); // front is a pointer to list
 break;

 }
 case 2:
 {

printf(“\n Enter the position : “);
fflush(NULL);
scanf(“%d”,&pos);
if(DeletePos (&front,pos)==0)
 printf(“\n there is no element to delete\n”);
else
 {printf(“the Linked List after deletion is....\n”);
 DisplayList(front); // display the list
 }
 break;

 }
 case 3:
 { data=GetData();

if(DeleteElm(&front,data)==0)
 printf(“no element whose value is %d\n “, data);
else
{
 printf(“ the Linked List after deletion is....\n”);
 DisplayList(front); // display the list
}
break;

 }
 case 4:

{ DisplayList(front); // display the list
break;

}
 case 5:

{

221Linear Data Structures

EraseList(front);
break;

}
 case 6: exit(0);

} // end of switch
} // end of while

 }// end of main

//* AddFront adds node pointed by new node in thebegining
void AddFront (node **front, node *newnode)
 {
 // make new node as first node. // next to point to * front
 newnode->next =*front ;
 *front = newnode ; // ref 2. Now you made newnode to be known as * front.
 }
/* deletes at pos. first element is 0. fn returns 0 if no element at given pos*/

int DeletePos(node ** front, int pos)
 { node *cur,*prev; // declare two pointers

 //check if the node to be deleted is the first node

 if (pos==0) // delete first node
{
 cur= * front; // store first node in cur for deletion later.
 *front=(*front)->next; // shift header to next node
}
else
 {
 int i=0;
 cur=*front; // store in cur. We will use cur for traversal.
 while(i< pos && cur) //| cur!=NULL
 {

 prev=cur; //store it in prev. You will need prev for pointer
 //readjustment.

 cur=cur->next; // go to next node
 i++;

 }
 /* check if element at given pos exists*/
 if(cur)
 prev->next=cur->next; // point prev node to cur—>next node
 }

C & Data Structures by Practice222

if (cur)
{ free(cur); // delete cur node
 return 1; // successful deletion
 }
 else
 return 0; // deletion failed

 }// end of DeletePos ()

 /* DeleteElm deletes a node whose data field is given
 returns 0 if no element is found*/

 int DeleteElm(node **front, int data)
 {
 node *cur,* prev;
 // traverse to find required node
 cur=*front;
 while(cur&& cur->data!=data)
 {
 prev=cur; // save cur in prev
 cur=cur->next;
 }
 // if the element is found
 if (cur)
 { // if its first element

if(cur==*front)
 *front=(*front)->next;
else
 prev->next=cur->next;
free(cur);
return 1;

 }
 else

return 0;
 }// end of DeleteElm

int GetChoice ()
 { int choice ;
 do

 { printf(“\n1 Insert at beginning of the Linked List \n”);
 printf(“2 Delete an element at given position \n”);
 printf (“3 Delete an element of given data \n”);
 printf (“4 Display the Linked List \n”);
 printf (“5 Erase the Linked List \n”);

223Linear Data Structures

 printf (“6 Quit \n”);
 printf (“\n Enter your choice.. : “);
 fflush(NULL);
 scanf(“%d”, &choice);
 } while(choice <1 || choice >6); // continue loop

 return (choice);

 }//end of GetChoice()

 int GetData ()
 { int data;
 printf(“\n Enter data for the node : “);
 fflush(NULL);
 scanf(“%d”, & data);
 return data;
 }//end of GetData()

void DisplayList (node *front)
 { node * cur;

 cur = front ; // cur is the node for traversal
 if (!cur)
 printf(“\n the list is empty \n “);
 else
 {

 printf(“\n the list is......\n”);
 while (cur)
 { printf (“%d”, cur->data);
 if (cur->next) ;// next node exists
 printf(“ —> “);
 cur = cur->next ; // go to next node
 }

 }
} // end of DisplayList()

void EraseList(node *front)
{

node *cur;
cur = front;
while(cur)
{
 front = cur -> next;
 free(cur);
 cur = front;

C & Data Structures by Practice224

 DisplayList(front);
 }

return;
}
/*output
1 Insert at beginning of the Linked List
2 Delete an element at given position
3 Delete an element of given data
4 Display the Linked List
5 Erase the Linked List
6 Quit

 Enter your choice.. : 1
 Enter data for the node : 10
 the list is......
10 —>
 Enter your choice.. : 1
 Enter data for the node : 20
 the list is......
20 —> 10 —>

 Enter your choice.. : 1
 Enter data for the node : 30
 the list is......
30 —> 20 —> 10 —>
 Enter your choice.. : 3
 Enter data for the node : 20
 the Linked List after deletion is....
 the list is......
30 —> 10 —>

 Enter your choice.. : 1
 Enter data for the node : 50
 the list is......
50 —> 30 —> 10 —>

 Enter your choice.. : 2
 Enter the position : 1
the Linked List after deletion is....
 the list is......
50 —> 10 —>

 Enter your choice.. : 5
 the list is......
10 —>
 the list is empty

 Enter your choice.. : 6 */

225Linear Data Structures

 9.4 REVERSE LIST
In this module functions, void ReverseList (node ** front) we would reverse the list. The lists are
shown in 9.5. The reversed list appears at Fig. 9.5b

G=c êçå í

kì ää

kì ää

`ìê

NM OM

O

PM

colkq

PMOMNM

Fig. 9.5 a& b Original linked list and the reversed

void ReverseList (node ** front)
 {
 node *cur,*prev, *temp; // declare three pointers
 cur=*front; prev=NULL *front
 prev=NULL;
 while (cur !=NULL) {
 { temp=prev
 temp=prev;
 prev=cur;
 cur=cur->next;
 prev->next=temp; temp
 } }
 *front= prev;
}

Example 9.2 reverselist.c. Here is the complete listing of the program.

//reverselist.c a program to reverse the list.
// single Linked List
#include<stdio.h>
#include<stdlib.h>

Åìê

Åìê

Åìê

éêÉî

éêÉî

C & Data Structures by Practice226

struct LinkedList
{ int data;
 struct LinkedList * next;
};
typedef struct LinkedList node;
// declarations of function prototypes
void AddFront(node **front, node *newnode);
void ReverseList (node ** front);
int GetData();
int GetChoice();
void DisplayList(node *front);
int main()
 { node* front = NULL;
 node *newnode;
 int data;
 while(1)

{ switch(GetChoice())
 { case 1:

 { data=GetData();
 newnode=(node*) malloc(sizeof(node));
 newnode->data=data;
 AddFront(&front,newnode); //&front is a pointer to pointer
 DisplayList(front); // front is a pointer to list
 break;

 }

 case 2:
{ DisplayList(front); // display the list

break;
}

 case 3:
 {
 ReverseList(&front); //&front is a pointer to pointer

 printf(“\n Reverse Order.....\n”);
 DisplayList(front); // front is a pointer to list
 break;
 }

 case 4: exit(0);
} // end of switch

} // end of while
 }// end of main

227Linear Data Structures

//* AddFront adds node pointed by new node in thebegining
void AddFront (node **front, node *newnode)
 {
 // make new node as first node. // next to point to * front
 newnode->next =*front ;
 *front = newnode ; // ref 2. Now you made newnode to be known as * front.
 }
int GetChoice ()

 { int choice ;
 do

 { printf(“\n1 Insert at beginning of the Linked List \n”);
 printf (“2 Display the Linked List \n”);
 printf (“3 Reverse the Linked List \n”);

 printf (“4 Quit \n”);
 printf (“\n Enter your choice.. : “);
 fflush(NULL);
 scanf(“%d”, &choice);
 } while(choice <1 || choice >4); // continue loop

 return (choice);

 }//end of GetChoice()

 int GetData ()
 { int data;
 printf(“\n Enter data for the node : “);
 fflush(NULL);
 scanf(“%d”, & data);
 return data;
 }//end of GetData()
void DisplayList (node *front)
 { node * cur;

 cur = front ; // cur is the node for traversal
 if (!cur)
 printf(“\n the list is empty \n “);
 else
 {

 printf(“\n the list is......\n”);
 while (cur)
 { printf (“%d”, cur->data);
 if (cur->next) ;// next node exists
 printf(“ —> “);
 cur = cur->next ; // go to next node
 }

 }

C & Data Structures by Practice228

} // end of DisplayList()
void ReverseList (node ** front)
 {
 node *cur,*prev, *temp; // declare three pointers
 cur=*front;
 prev=NULL;
 while (cur !=NULL)
 {
 temp=prev;
 prev=cur;
 cur=cur->next;
 prev->next=temp;
 }
 *front= prev;
}
/*output
1 Insert at beginning of the Linked List
2 Display the Linked List
3 Reverse the Linked List
4 Quit
Enter your choice.. : 1
Enter data for the node : 10
the list is......
10 —>
Enter your choice.. : 1
Enter data for the node : 20
the list is......
20 —> 10 —>
Enter your choice.. : 1
Enter data for the node : 30
the list is......
30 —> 20 —> 10 —>
Enter your choice.. : 3
Reverse Order.....
 the list is......
10 —> 20 —> 30 —>
*/
A note on why we have used **front instead of *front to indicate first node is appropriate here. The
idea is two fold. First is to teach you how to handle pointer to pointer in a major application. Secondly
**front is affording us to add in the front of the list. In the subsequent applications we would show you
how to use *front and still get the result, obviously with much less complexity. Solved Problems also
demonstrate the use of a pointer to handle single linked list.

node *createlist(node *front)
{ node *temp,*p;
 int dat;

229Linear Data Structures

 printf(“\nenter data<9999 to stop>:”);
 scanf(“%d”,&dat);
 while(dat!=9999)

{ // check if list is empty
 if(front==NULL)

 {front=(node*)malloc(sizeof(node));
 front->data=dat;
 front->next=NULL;
 }
 else
 { temp=front; // temp will be use for traversing

 // traverse the list till the end
 while(temp->next!=NULL)

temp=temp->next; //now temp points to the last element of the list
 // get a new node and assign data and next to point to NULL
 p=(node*)malloc(sizeof(node));

 p->data=dat;
 p->next=NULL;
 temp->next=p; // assign prev node to just added node p
 }
 printf(“\nenter data<9999 to stop>:”);

 scanf(“%d”,&dat);
}//end of while
return(front);

}//end of create list

 9.5 DOUBLE LINKED LISTS
A single linked list with a pointer to next node, is efficient and fast only when the linked list is small. But
for large size linked lists, it is inefficient. Consider for example if you have 1000 nodes and you are
currently at 800th node and your destination node is 400. Then, traversal to end of the list takes 200
nodes and a further nodes of 400, making a total of 600 nodes.

In double linked list an additional pointer to previous node is provided so that traversal can be in any
direction to the left of current node or to the right of current node.

Ñêçåí
é êÉî áçìë

kì ää

åÉñí

krii

Fig. 9.6 A double linked list with next and previous pointers

C & Data Structures by Practice230

Example 9.3 Double Linked List.

 // dllist.c.double linked list
//dllist.c
#include<stdio.h>
#include<stdlib.h>

struct doublellist
{ int data;
 struct doublellist *left;
 struct doublellist *right;
};
typedef struct doublellist node;

node *createlist(node *list);
node *insert(int n,int val,node *list);//insert node with data=val to the right of node with data=n;
node *delet(int n,node *list);
void printlist(node *list);
void main()
{ int val,n;
 node *list=NULL;
 list=createlist(list);
 printlist(list);
 printf(“\nEnter value to be inserted:”);
 scanf(“%d”,&val);
 printf(“Node after which value has to be inserted<0 for starting>:”);
 scanf(“%d”,&n);
 list=insert(n,val,list);
 printlist(list);
 printf(“\nEnter value to be deleted:”);
 scanf(“%d”,&n);
 list=delet(n,list);
 printlist(list);
}
node *createlist(node *list)
{ int n;
 node *p,*temp;
 do{ printf(“Enter value<0 to stop>:”);
 scanf(“%d”,&n);
 if(n!=0)

 { p=(node *)malloc(sizeof(node));//create an empty node
 p->data=n;
 if(list==NULL) //if this is the first node in the list

{list=p;
 p->left=NULL;
 p->right=NULL;
}

 else

231Linear Data Structures

{ temp=list;
 while(temp->left!=NULL)
 temp=temp->left; //traverse to the end of the list

 //now add the new node at the end
 temp->left=p;
 p->right=temp;
 p->left=NULL;
}

 }
 }while(n!=0);
 return(list);
}//end of createlist
node *insert(int n,int val,node *list)
{ node *p,*temp;
 temp=list;
 p=(node *)malloc(sizeof(node));
 p->data=val;
 if(n==0)
 {p->right=NULL;
 p->left=list;
 list->right=p;
 list=p;
 }
 else
 { while(temp->data!=n && temp->left!=NULL)
 temp=temp->left; //find location oh n in the list
 if(temp->data!=n)

{printf(“node does not exist in list\n”);
 exit(1);

}
 else

{ p->left=temp->left;
 temp->left=p;

 p->right=temp;
 if(p->left!=NULL) //check if the node is to be added in the end

 (p->left)->right=p;
}

 }
 return(list);
}
node *delet(int n,node *list)
{ node *temp=list;
 while(temp->data!=n && temp->left!=NULL)
 temp=temp->left; //find location oh n in the list

C & Data Structures by Practice232

 if(temp->data!=n)
 {printf(“node does not exist in list\n”);
 exit(1);
 }
 else
 { //case 1:deletion of starting node

 if(temp->right==NULL)//check if it is the staring node
 {list=temp->left;
 list->right=NULL;
 free(temp);
 }
//case 2:node is general node with left and right nodes
 else
 {(temp->right)->left=temp->left;
 if(temp->left!=NULL) //check if node is last node

 (temp->left)->right=temp->right;
 free(temp);
 }

 }
 return(list);
}
void printlist(node *list)
{ node *temp=list;
 printf(“list:”);

if(list==NULL)
{printf(“Empty list”);
 exit(1);
}
else
{
 while(temp!=NULL)
 {printf(“%5d”,temp->data);
 temp=temp->left;
 }
}

}
/*Output:
Enter value<0 to stop>:34
Enter value<0 to stop>:56
Enter value<0 to stop>:23
Enter value<0 to stop>:67
Enter value<0 to stop>:0
list: 34 56 23 67

233Linear Data Structures

Enter value to be inserted:55
Node after which value has to be inserted<0 for starting>:0
list: 55 34 56 23 67
Enter value to be deleted:56
list: 55 34 23 67 */

OBJECTIVE QUESTIONS

1. Linked List is dynamic and linear data structure True/False
2. The declaration shown below refers to

 struct list
 {

int info;
struct list *next;
};
a) Doubly-linked list b) Circular linked list
c) Singly linked list d) Stack

3. In a linear linked list the nodes are linked sequentially True/False
4. If the next pointer is made to point to the first node of the list, the the list can be called as

a) Single linked list b) Circular Linked List
c) double linked list c) circular queue

5. Array is a dynaic data structure True/False
6. In linked Lists, each node contains a pointer that points to

a) instance of same structure that is next to current node
b) Value of next component
c) Pointer to next component
d) None of the above

7. Last node in a linked list points to
a) FIRST node b) Last node
c) NULL d) Previous

8. An abstract data type hides the implementation details True/false
9. Calloc() requires arguments

a) one b) two arguments
c) 0 d) 3

10. Calloc() allocates memory that contain garbage value True/False
11. Malloc() allocates memory that contain garbage value True/False

C & Data Structures by Practice234

REVIEW QUESTIONS

1. What is a data structure? Explain the various types of data structures with suitable example?
2. Write the routines to

a. Insert element at nth position.
b. Delete element at nth position in double linked list.

3. What is the difference between linked list and an array?
4. What is circular doubly linked list? Explain the various operations on circular doubly linked list

with suitable algorithms?
5. Write a function in ‘c’ to remove duplicate elements in a single linked list?
6. Write a function in ‘c’ to combine two ordered lists in to a single ordered list?
7. What is single list ? Explain various operations on single linked list with algorithms?

SOLVED PROBLEMS

1. Write a program to concatenate two linked lists. List2 to be attached at the end of list1.
//concatlist.c
#include<stdio.h>
#include<stdlib.h>
struct linkedlist
{ int data;
 struct linkedlist *next;
};
typedef struct linkedlist node;
node *createlist(node *front);
node *concatlist(node *front1,node *front2);
void printlist(node *front);
void main()
{ node *front1=NULL;
 node *front2=NULL;
 printf(“create first list........\n”);
 front1=createlist(front1);
 printlist(front1);
 printf(“\ncreate second list.......\n”);
 front2=createlist(front2);
 printlist(front2);
 front1=concatlist(front1,front2);
 printlist(front1);
}
node *createlist(node *front)
{ node *temp,*p;
 int dat;

235Linear Data Structures

 printf(“\nenter data<0 to stop>:”);
 scanf(“%d”,&dat);
 while(dat!=0)

{
 if(front==NULL)

 {front=(node*)malloc(sizeof(node));
 front->data=dat;
 front->next=NULL;
 }
 else
 { temp=front;

 while(temp->next!=NULL)
temp=temp->next; //now temp points to the last elemnt of the list

 p=(node*)malloc(sizeof(node));
 p->data=dat;
 p->next=NULL;
 temp->next=p;
 }
 printf(“\nenter data<0 to stop>:”);

 scanf(“%d”,&dat);
}//end of while
return(front);

}//end of create list
node *concatlist(node *front1,node *front2)
{ node *temp;

 temp=front1;
 while(temp->next!=NULL)

 temp=temp->next;
 temp->next=front2;
 return(front1);

}
void printlist(node *front)
{ node *temp;
 temp=front;
 printf(“\nPrinting list........\n”);
 while(temp->next!=NULL)

{ printf(“%d\t”,temp->data);
 temp=temp->next;
}

 printf(“%d”,temp->data);
}
/*output
create first list........

C & Data Structures by Practice236

enter data<0 to stop>:76
enter data<0 to stop>:279
enter data<0 to stop>:90
enter data<0 to stop>:0
Printing list........
76 279 90
create second list.......
enter data<0 to stop>:34
enter data<0 to stop>:67
enter data<0 to stop>:98
enter data<0 to stop>:0
Printing list........
34 67 98
Printing list........
76 279 90 34 67 98*/

2 Write a program to sort a linked list
#include<stdio.h>
#include<stdlib.h>

struct linkedlist
{ int data;
 struct linkedlist *next;
};
typedef struct linkedlist node;
 node *createlist(node *front);
 node *llsort(node *front);
 void printlist(node *front);

void main()
{node *front=NULL;
 printf(“create list........\n”);
 front=createlist(front);
 printlist(front);
 front=llsort(front);
 printf(“\nsorted linked list.......\n”);
 printlist(front);
}

node *createlist(node *front)
{ node *temp,*p;
 int dat;

237Linear Data Structures

 printf(“\nenter data<0 to stop>:”);
 scanf(“%d”,&dat);

 while(dat!=0)
{ if(front==NULL) //if the new node to be created is the first node in the list

 {front=(node*)malloc(sizeof(node)); //create newnode and store address as
in front

 front->data=dat; //assign data to the first node
 front->next=NULL;
}

else
{ temp=front;

 while(temp->next!=NULL)//traverse the list till you reach the last node
temp=temp->next; //now temp points to the last element of the list

 p=(node*)malloc(sizeof(node));//create new node
 p->data=dat; //assign data to the new node
 p->next=NULL;
 temp->next=p; //make the last node point to the new node

}
printf(“\nenter data<0 to stop>:”);

 scanf(“%d”,&dat);
}//end of while
return(front);

}

node *llsort(node *front)
{ node *temp,*min,*p,*q,*r,*previous;//create theree pointers
 int val;

 min=front;
 r=front;
 while(min!=NULL)
 { temp=min->next;

 previous=min;
 val=min->data;
 while(temp!=NULL)

 { while(val<temp->data)
{ previous=temp;

 temp=temp->next;
 if(temp==NULL)
 break;
}

 if(temp!=NULL)
 { if(min->next==temp)

 { min->next=temp->next;

C & Data Structures by Practice238

 temp->next=min;
 if(min==front)

 front=temp;
 else
 r->next=temp;

 }
 else
 { p=temp->next;
 previous->next=min;

 temp->next=min->next;
 min->next=p;

 if(min==front)
 front=temp;

 else
 r->next=temp;

 }
 q=temp; //swap temp and min
 temp=min;
 min=q;

 val=min->data;//set val to newmin
 if(min==front)
 r=min;

 previous=temp;
 temp=temp->next;

 }//end of if
 }//end of while

 r=min;
 min=min->next;

 }//end of while
 return(front);
}
void printlist(node *front)
{ node *temp;
 temp=front;
 printf(“\nPrinting list........\n”);
 while(temp->next!=NULL)

{ printf(“%d\t”,temp->data);
 temp=temp->next;
}

 printf(“%d”,temp->data);
}

239Linear Data Structures

/*Output:
create list........
enter data<0 to stop>:34
enter data<0 to stop>:56
enter data<0 to stop>:12
enter data<0 to stop>:78
enter data<0 to stop>:93
enter data<0 to stop>:100
enter data<0 to stop>:3
enter data<0 to stop>:59
enter data<0 to stop>:67
enter data<0 to stop>:0

Printing list........
34 56 12 78 93 100 3 59 67
sorted linked list.......
Printing list........
3 12 34 56 59 67 78 93 100*/

3. Write a program to merge two sorted linked lists
#include<stdio.h>
#include<stdlib.h>

struct linkedlist
{ int data;
struct linkedlist *next;
};
typedef struct linkedlist node;
node *createlist(node *front,int dat);
node *llmerge(node *front1,node *front2);
void printlist(node *front);
void main()
{ node *front1=NULL;
 node *front2=NULL;
 node *front3=NULL;
 int dat;
 printf(“create first list........\n”);
 do{ printf(“\nenter data<0 to stop>:”);
 scanf(“%d”,&dat);
 if(dat!=0)

 front1=createlist(front1,dat);
 }while(dat!=0);

C & Data Structures by Practice240

 printlist(front1);
 printf(“\ncreate second list.......\n”);
 do{
 printf(“\nenter data<0 to stop>:”);
 scanf(“%d”,&dat);
 if(dat!=0)

 front2=createlist(front2,dat);
 }while(dat!=0);

printlist(front2);
 front3=llmerge(front1,front2);
 printlist(front3);
}
node *createlist(node *front,int dat)
{ node *temp,*p;
 if(front==NULL)
 { front=(node*)malloc(sizeof(node));

 front->data=dat;
 front->next=NULL;

 }
 else

{ temp=front;
 while(temp->next!=NULL)

temp=temp->next; //now temp points to the last element of the list
 p=(node*)malloc(sizeof(node));

 p->data=dat;
 p->next=NULL;
 temp->next=p;

 }
 return(front);
}
node *llmerge(node *front1,node *front2)
{

node *temp1,*temp2;
node *front3=NULL;
temp1=front1;
 temp2=front2;
 while(temp1!=NULL && temp2!=NULL)
 { if(temp1->data>temp2->data)

 { front3=createlist(front3,temp2->data);
temp2=temp2->next;

 }
 else
 {

241Linear Data Structures

 front3=createlist(front3,temp1->data);
 temp1=temp1->next;

 }
 }//end of while

 if(temp1==NULL)
 { while(temp2!=NULL)

 {
 front3=createlist(front3,temp2->data);

 temp2=temp2->next;
 }

 }
 else

 { while(temp1!=NULL)
 { front3=createlist(front3,temp1->data);

 temp1=temp1->next;
 }

 }
 return(front3);
}
void printlist(node *front)
{

node *temp;
temp=front;

 printf(“\nPrinting list........\n”);
while(temp->next!=NULL)
{ printf(“%d\t”,temp->data);
 temp=temp->next;
}

 printf(“%d”,temp->data);
}
/* output
create first list........
enter data<0 to stop>:1
enter data<0 to stop>:3
enter data<0 to stop>:4
enter data<0 to stop>:7
enter data<0 to stop>:9
enter data<0 to stop>:0
Printing list........
1 3 4 7 9
create second list.......
enter data<0 to stop>:2
enter data<0 to stop>:4

C & Data Structures by Practice242

enter data<0 to stop>:6
enter data<0 to stop>:8
enter data<0 to stop>:0
Printing list........
2 4 6 8
Printing list........
1 2 3 4 6 7 8 9*/

ASSIGNMENT PROBLEMS

1. Write a “C” program to reverse the elements in a single linked list.
2. How can a polynomial in three variables(x,y&z)be represented by a singly linked list? Each node

should represent a term and should contain the power of x,y,z as well as coefficient of that term.
write a “C” program to add two such polynomials.

3. Write a “C” program to exchange two nodes of a singly linked list.
4. Write a “C” program to create a singly linked list and split it at the middle and make the second

hay as the first and make the second hay as the first and vise-versa display the final list.
5. Write a “C” program to multiply two polynomials

Solutions to Objective Questions
1) True 2) c 3) true 4) b 5) False 6) a
7) c 8) True 9) b 10) False 11) True

10
STACKS

CHAPTER

 10.1 INTRODUCTION
We have seen linked lists, linear, double, and circular linked lists and seen how they are useful data
structures. In this chapter, we will study one of the most frequently used data structure, called stacks.
Stack is a linear data structure. Data is inserted and extracted based on a technique called Last in first
Out. As an example think of an activity of students submitting assignments to teacher. The teacher will
receive and pile them in a stack on the table, and starts corrections from the top. Therefore, last in
assignment gets service first. As you will see computer system depends on stack structure to solve
several of the problems.

K

K

ã ~ñ

pí~Åâ=p áòÉ =W=j~ñ

íçë=W=ÅìêêÉå í=mçëáíáçå

pí~Åâ=éç áå íÉ ê=EíçëZMF
íçëZ JN =ãÉ~åë=ëí~Åâ=áë=Éãéíó

K

P

O

N

N

Fig. 10.1 Stack representation and terms

 10.2 STACK OPERATIONS
We can perform following operations on a stack:

1. Create a stack.
2. Check if stack is full or empty. We can not insert into a full stack. Neither we can extract from

empty stack.

C & Data Structures by Practice244

3. Initialize the stack. For example, SP = -1, and tos = max - 1; are initialization commands. Stack
extends from 0 to (max –1).

4. Push (insert) an element onto stack, if it is not full.
5. Pop(extract) an element from the stack, if it is not empty.
6. Read from top of stack.
7. Display / Print the entire stack.

Stack can be implemented using array or linked lists. We will learn the theory of stacks using arrays and
later on show how it is implemented using linked lists.

 10.3 ARRAY IMPLEMENTATION OF STACK DATA STRUCTURE
We can define data structure for stack as follows:

struct stack //implement stack as a structure
{

int s[10]; // 10 elements in the stack
int sp; // top of stack

};
typedef struct stack st;

We have typecasted stack as st. We will be able to use st to represent structure stack. We can initialize
the stack using

 #define max = 10 ; stack to have maximum of 10 elements
 st.sp = -1 ; // assigning to –1 indicates that stack is empty.

Check if stack is Empty. The function returns 1 if it is empty.

int isEmpty()

{ if(st.sp==-1) //if top is equal to null
{ printf(“Stack is Empty”);

return 1;
}

 else
 return 0;
}// end of isEmpty()

Check if stack is full; The function returns 1 if it is full.

int isFull ()
 { if(st.sp==max-1) //if top is equal to max position

245Stacks

{ printf(“Stack is overflow”);
return 1;

}
 else
 Return 0;
 } // end of isFull()

Push Operation : Check if stack is full. If not full push the element to stack using ‘push’ instruction.
Then increment sp pointer by 1.

int push(int val)
{ /* data item to be pushed onto stack. Ans holds information if stack
 is full or empty returned by function isFull()*/
 int ans;
 ans = st.isFull(); // we have invoked isFull()
 if (ans == 0) // stack is not full

 { st.sp++;//increment sp to next position
 st.s[st.sp]=val;//assigning val to st[sp]

 }
 else
 { printf(“Stack is overflow”);
 }
 return 0;
} // end of int push ().

Pop Operation : Check if stack is empty. If not empty the pop the element. Decrement the stack pointer
SP by 1.

int pop()
{

int ans ; // ans hold the return value from isEMpty(). 1 if it is
 // empty. Else it holds 0.

 ans = st.isEmpty();
 if (ans == 0) // The stack is not empty
 {
 //print popped item
 printf(“The pop element is \t%d”,st.s[st.sp]);
 st.sp—; //decrement stack[sp]
 }
 else
 {
 printf(“\n Stack is Empty”);
 }
}// end of int pop
Display operation: This operation is simple and straight forward. In fact by now you should be

C & Data Structures by Practice246

comfortable with these kind of modules. We are displaying the stack from top to bottom to reflect its
LIFO structure, i.e from current sp to beginning of stack.

int disp()//display function
{ int i, ans ;

printf(“\n”);

if (st.isEmpty()= 0) // function returns 0 i.e stack is not empty
 { for(i=st.sp;i>=0;i—) //display stack items
 printf(“%d\t”,st.s[i]);

 }
 else
 { printf(“\n stack is Empty.”);
 }
 return 0;
}//end disp()

Now, we present full program for implementation of stack data structure using arrays.

Example 10.1 stackarray.c
/* program to implement stack operations using arrays */
//stackarr.c
#include<stdio.h>
#define max 10 //assign variable max to 10. Number of stack array

// Prototype Declarations

int push(int val);
int pop();
int disp();
int isEmpty();
int isFull();

// Stack structure declaration.

struct stack //implement stack as a structure
{

int s[10];
int sp;

};
typedef struct stack stk; // typedefining structure stk as st.
stk st;

int main()
{

247Stacks

int choice,item; // item is data to be pushed on to stack
st.sp=-1; // Initialization command. -1 indicates stack is empty.

do
{

printf(“\n\n”);
printf(“\n menu”);
printf(“\n 1:push”);
printf(“\n 2:pop”);
printf(“\n 3:display”);
printf(“\n 4:exit\t\t”);
printf(“\n Enter your choice:”);
scanf(“%d”,&choice);
switch(choice)

{
case 1:

 printf(“\nEnter an element to push: “);
 scanf(“%d”,&item); //scan item

push(item);
disp();
break;

case 2:
pop();
disp();
break;

case 3:
disp();
break;

}

}while(choice !=4);
 return 0;
}// end of main

// Function Declarations

int isEmpty()

{
 if(st.sp==-1) //if top is equals to null

{
//printf(“Stack is Empty”);

C & Data Structures by Practice248

return 1;
}

 else
 return 0;
}// end of isEmpty()

int isFull ()
 {
 if(st.sp==max-1) //if top is equals to max position

{
// printf(“Stack overflow”);

return 1;
}

 else
 return 0;
 } // end of isFull()

int push(int val)
{
 /* data item to be pushed onto stack. Ans holds information if stack
 is full or empty returned by function isFull()*/
 int ans;
 ans = isFull(); // we have invoke isFull()
 if (ans == 0) // stack is not full

 {

 st.sp++;//increment sp to next position
 st.s[st.sp]=val;//assigning val to st[sp]

 }
 else
 {
 printf(“Stack overflow”);

 }
 return 0;
} // end of int push ().

int pop()
{

int ans ; // ans hold the return value from isEMpty(). 1 if it is
 // empty. Else it hold 0.
 ans = isEmpty();
 if (ans == 0) // The stack is not empty
 {

249Stacks

 //print popped item
 printf(“\nThe pop element is \t%d”,st.s[st.sp]);
 st.sp—; //decrement stack[sp]

 }
 else
 {
 printf(“\n Stack is Empty no items to pop”);
 }

return 0;
}// end of int pop

 int disp()//display function
 {

 int i ;
 printf(“\n”);

 if (isEmpty()== 0)
 {

 printf(“\n ****elements of stack****”);
 for(i=st.sp;i>=0;i—) //display stack items

 printf(“\n %d\t”,st.s[i]);
 }
 else
 {
 printf(“\n stack is Empty.”);
 }
 return 0;
 }//end disp()
/*output
 menu
 1:push
 2:pop
 3:display
 4:exit
 Enter your choice:1
Enter an element to push: 10
 ****elements of stack****
 10
 menu
 Enter your choice:1
Enter an element to push: 20

C & Data Structures by Practice250

 ****elements of stack****
 20
 10
menu
Enter your choice:1
Enter an element to push: 30
****elements of stack****
 30
 20
 10
 menu
 Enter your choice:3
 ****elements of stack****
 30
 20
 10
 menu
 Enter your choice:2
The pop element is 30
 ****elements of stack****
 20
 10
 menu
 Enter your choice:4 */

Compile and run. Push and pop operations are important. Get acquainted well with basic functions
presented here. In subsequent sections we will concentrate only on main functionality. You should be
able to build full programme by using functions described in this section. Let us turn our attention to
stack implementation using linked list.

 10.4 STACK IMPLEMENTATION USING LINKED LISTS
Example 10.2 stacklist.c
/*Implementation of stack data structure using Linked List
 stackll.c*/
 # include<stdio.h>
 # include<stdlib.h>
 #define size 10

 struct stack
 { int data;

 struct stack *next; // self referential structure
 };

251Stacks

 typedef struct stack stk;
 stk *tos=NULL;
 void push();
 int pop();
 void display();
 void main()
 {int choice=0;
 int val;
 do
 { printf(“\n Menu Details........ \n”);

 printf(“\n 1. push a data item onto stack and display”);
 printf(“\n 2. pop a data item from stack and display”);
 printf(“\n 3. display stack”);
 printf(“\n 4. exit”);
 printf(“\n enter your choice:”);
 scanf(“%d”,&choice);
 switch(choice)
 {
 case 1:

 push();
 display();
 break;

 case 2: val=pop();
 printf(“\n pop up value= %d”,val);
 printf(“\n stack after pop up”);
 display();
 break;

 case 3: display();
 break;

 case 4: printf(“exiting from the programme”);
 break;

 default: printf(“\nwrong choice<enter between 1 & 4 only”);
 }

}while(choice!=4);
 }//end of main

 // Function definitions
 void push()
 { stk *node; // node is new node to be pushed as first node

 node=(stk*)malloc(sizeof(stk));
 printf(“\n enter data to be pushed on to stack:”);
 scanf(“%d”,&node->data);
 //make node as first node of stack

C & Data Structures by Practice252

 node->next=tos;
 tos=node; // now tos points to new node inserted
 }
 int pop()
 { int val; // val returns data item from top of stack

 // store first node in temp
 stk *temp;
 temp=tos;

 //check if stack is empty
 if (tos==NULL)
 { printf(“\n stack is empty”);
 exit(0);

 }
 else
 { val=tos->data;
 // shift tos to next element
 tos=tos->next;

 free(temp); // release temp
 }
 return val;

 }
 void display()
 { stk *temp;

 temp=tos; // we will use temp for traversing the stack
 printf(“\n Stack elements are....\n”);
 if (temp == NULL)
 printf(“\n stack is empty”);
 else
 { while (temp->next!=NULL)
 { printf(“ %d \n”,temp->data);

 temp=temp->next;
 } //end of while

 //now last element still left for display
 printf(“%d”,temp->data);
 }//end of if
 }
/*output

 Menu Details........

1. push a data item onto stack and display
2. pop a data item from stack and display
3. display stack
4. exit

253Stacks

 enter your choice:1
 enter data to be pushed on to stack:100
 Stack elements are....
100
 Menu Details........
 enter your choice:1
 enter data to be pushed on to stack:200
 Stack elements are....
200
100
 Menu Details........
enter your choice:1
 enter data to be pushed on to stack:300
 Stack elements are....
300
200
100
 Menu Details........
 enter your choice:3
 Stack elements are....
300
200
100
 Menu Details........
enter your choice:2
 pop up value= 300
 stack after pop up
 Stack elements are....
200
100
 Menu Details........

 10.5 APPLICATIONS OF STACK
10.5.1 Infix to Postfix Notation. Normally you will code your expressions in the programmes using
infix notation, but compiler understands and uses only postfix notation and hence it has to convert infix
notation to post fix notation. For this activity, stack data structure is used. We will consider following
binary operators and their precedence rules:

^ Exponentiation
 */ Multiplication and Division. Both have same priority
 Execution is from left to right.
 +- Addition and Subtraction. Both have same priority
 Execution is from left to right.

C & Data Structures by Practice254

 When un parenthesized operators are encountered
 Exponentiation : order is from right to left
 Example A^B^C means A^(B^C)
 Other Operators : order is from left to right
 Example D+E-G means (D+E)-G
Let us solve a problem

Infix notation : A +B * C – D
Step 1 : Based on priorities of operators, parenthesize the expression. You know, the priority for the
expression given is (* or /) and followed by (+ or -).

 ((A + (B * C)) – D)

Step 2. Check your brackets are correct and opening and closing brackets match.

 Opening brackets = closing brackets = 3

Step 3. Number your brackets starting from Right Hand side. Give the same number to governing
bracket on left hand side.

 ((A + (B * C)) – D)
 1 2 3 3 2 1 start

Step 4 : Start scanning from RHS and when you encounter a closed bracket (for example 1), identify
opening bracket with the same number and putdown the governing operator for the pair (in this case
it is ‘–‘. We can store it on a stack by push command. Continue till you encounter next closing bracket
(2), pushing variable or symbols on to stack (for example D). Stack, now holds D -.

 ((A + (B * C)) – D)
 1 2 3 3 2 1 start

For closing and opening bracket pair numbered 2, the governing operator is ‘+’. Push it on to stack :
Stack now is + D -. Next, you encounter bracket pair 3 and governing operator is *. Push it on to stack
; stack now holds * + D -. Continue scanning and you will encounter variables C B, and A. Push them
on to stack. The stack at the end of conversion A B C * + D -.

Post Fix Notation : A B C * + D -

Now attempt all the problems in the exercise before you proceed to analyze the c code. The algorithm
is presented below:

255Stacks

Step 1 : Do for each character in the infix string repeat steps 2 to 5
Step 2 : if (character = = operand)
 Append to postfix string
Step 3 : If (character == “(“)
 Push it on to stack.
Step 4: If (character == operator)
 { While (priority of operator on tos >= priority of Operator)
 { pop()
 append to postfix string
 }
 push(operator)
 }
Step 5: If (symbol == “)“)
 { while(pop()!=”(“)
 {
 pop()
 append to postfix string
 }
 // drop “(“ parenthesis
 }
Step 6 : if input string ends then pop and append the stack contents to
 output string.
Step 7 : Exit

Example 10.3 Infix to post fix notation
//in2post.c
#include<stdio.h>//preprocessor
#include<string.h>//preprocessor
#include<stdlib.h>//preprocessor

 int preceed(char c);
 void push(char c);
 char pop();
 char stk[30];
 int tos =-1;
 void main()
 { int i,j=0,n,u,v;

 char infix[30],postfix[30];
 char c;

 printf(“\n enter the infix expression:”);

C & Data Structures by Practice256

 scanf(“%s”,infix);
 n=strlen(infix);

 for(i=0;i<n;i++)
{

if((infix[i]>= ‘a’ && infix[i]<= ‘z’) || (infix[i]>= ‘A’ && infix[i]<= ‘Z’))
{ postfix[j] = infix[i];
 j=j+1;

 } //end of if
 else
 if(infix[i]==’^’||infix[i]==’*’||infix[i]==’/’ ||infix[i]==’+’||infix[i]==’-’)

{ u = preceed(stk[tos]);
v = preceed(infix[i]);

 while(v<= u && stk[tos]!= ‘(‘)
 { postfix[j]=pop();

 j=j+1;
 u = preceed(stk[tos]);

 }
 push(infix[i]);
 }//end of else if 1
 else

if(infix [i] == ‘(‘)
{ push(infix[i]);
} // end of else if 2

 else
 if (infix[i] == ‘)’)
 { c = pop();
 while(c != ‘(‘)

{ postfix[j]= c;
 j=j+1;

 c= pop();
 } // end of while

}// end of if else 3
 else

 {
 printf(“\n\tTHE EQUATION HAS ERROR”);
 exit(0);
 }//end else

} // end of for
 while(tos!=-1)
 { postfix[j]= pop();

 j=j+1;
 }

257Stacks

 postfix[j]=’\0';
 printf(“\nThe equation in POSTFIX notation is: %s\n”,postfix);
}//end main

int preceed(char c)//preceed function
{ int v;

switch(c)
{

case ‘^’: v=3;
 break;

case ‘*’:
case ‘/’: v=2;

 break;
case ‘+’:
case ‘-’: v=1;

 break;
default : v=0;

 break;
}//end switch
return(v);

}//end preced()

void push(char c)
 { tos++;
 stk[tos] = c;
 }

char pop()
{ char val;
 val = stk[tos];
 tos—;
 return(val);
}
/*output
 enter the infix expression:A+B*C-D
The equation in POSTFIX notation is: ABC*+D-*/

10.5.2 Evaluation of Postfix Expression. Stack data structure can be employed to evaluate post fix
notation expression. We provide the example, algorithm and code. Analyze and understand the algorithm
and code. Be advised that these kind of algorithms are used by compilers to evaluate expressions written
in your code.

C & Data Structures by Practice258

Algorithm
 1 Scan the input symbol from a given input string

 If (symbol = = operand)
 Push it on to stack.
 2 Else
 {
 if (symbol = = operator)
 apply operation on two operands
 obtained by two successive stack pop operations

 Push the result on to stack.
 }
3. Continue steps 1 & 2 till end of input string

Example for evlaution of a postfix notation expression

Infix notation : A +B * C – D

Post Fix notation : A B C * + D -

For A = 2, B = 3, C = 4, and D = 5 ; the above infix expression would yield 2 + 3 * 4 – 5 = 9. Let us see
how our stack goes around doing its job

Step 1 : first 3 symbols are operands A B C i.e 2, 3,4 ; hence they are pushed on to stack. Stack entries are :

 C B A i.e 4 3 2

Step 2 : Now you will encounter *. Therefore pop two top most operands from stack and perform the
operation and push the result on to stack.

 Operands popped : C & B i.e 4 * 3 = 12
 Push result on to stack.
 Stack entries at this stage are : 12 2

Step 3 : Now you will encounter +
 POP 12 & 2 and Result = 12 + 2
 Push on to stack. Stack entry now will be : 14

Step 4 : Next encounter is D. Push it on to stack. Stack entries at this stage :
 5 14

Step 5 : Next to encounter is - . Therefore pop two entries from stack i.e 5 & 14. Perform the operation
14 – 5 = 9.

259Stacks

Push the result on to stack : 9
We provide the code in the next sub section. However, we encourage you to write the code yourself by
looking at the algorithm. That is how good programmers take shape.

Example 10.4 eval.c
/* program for evaluation of a post fix expression. */

#include<stdio.h>//preprocessor
#include<string.h>//preprocessor
#include<stdlib.h>//preprocessor
#include<math.h>//preprocessor
char p[20]; //input string
float s[10];// stack
signed int top=-1,i=0,j=0,n;
float a,b,c,x;
//function declarations
signed int push(float);
float pop();
float pow1(float,float);
void main()//main function
 {

printf(“\n\tEnter An expression in post fix notation\n\t”);
scanf(“%s”,p);
n=strlen(p);//find length of expression
// we are inserting “)” because we can check end of expression

 // and ‘\0’ to denote end of string
 p[n]=’)’;
 p[n+1]=’\0';

n=n+2;
while(p[i]!=’)’)
{

switch(p[i])
{

case ‘+’:
b=pop();
a=pop();
c=a+b;
push(c);
break;

case ‘-’:
b=pop();
a=pop();
c=a-b;

C & Data Structures by Practice260

push(c);
break;

case ‘*’:
a=pop();

 b=pop();
c=a*b;
push(c);
break;

case ‘/’:

b=pop();
a=pop();
c=a/b;
push(c);
break;

case ‘^’:
b=pop();
a=pop();
c=pow1(a,b);
push(c);
break;

default :
 /*we have to typecast p[i] which is character
 to float so that we can push it on to float
 type stack*/

 x = float(p[i]-’0');
push(x);
break;

}
i++;

}
 printf(“\n\tThe evaluation of given expression is %8.4f\n\t”,s[top]);
 }//end main

//function definitions
 int push(float x)//push function
 {

top++;//increment top
s[top]=x;//assign x to stack of top
s[top+1]=’\0';
return 0;

 }//end push
 float pop()//pop function

261Stacks

 {
float item;
item=s[top];//assign stack of top to item
s[top]=’\0';
top—;//decrement top
return (item);

 }//end pop

float pow1(float a, float b)//power function
{

int i;
float n =1;
for(i=1;i<=b;i++)
{
n=n*a;
}//end for
return n;

}//end pow1()

Output :

 Infix Expression : A - B/(C * D ^ E)
 Postfix Expression :ABCDE^*/-. values for ABCDE are : 5 4 3 2 1

 Enter An expression in post fix notation
 54321^*/-

 The evaluation of given expression is 4.3333
 Press any key to continue

OBJECTIVE QUESTIONS

1) Which of the following mechanism is followed by stack:
a) LILO b) FIFO
c) LIFO d) None of the above

2. Automatic variables are stored in
a) Stack b) Queues
c) static d) heap memory

3. Stack using a linked list is better than a stack using array implementation because memory size is
fixed True/False

4. To remove an item fron the stack, we use
a) push b) pop
c) tos d) top

C & Data Structures by Practice262

5 To insert an item fron the stack, we use
a) push b) pop
c) tos d) top

6. An empty stack is denoted by
a) tos=0 b) tos=1
c) tos=-1 d) tos=max+1

7. A stack linear data structure True/False

8 A stack is static data structure True/False

9 pop() operation
a) displays the value popped on the screen
b) value is removed from top of stack and stored in a variable.
c) value is popped but lost.
d) none of the above.

10 top of stack pointer is incremented before push operation True/False

REVIEW QUESTIONS

1) Declare two stacks of varying length in a single array. Write c routines push1, push2, pop1and
pop2 to manipulate the two stacks.

2) Discuss two applications of the stack.

3 Use the operations push, pop, stacktop, and empty to construct operations on stack, which do each
of the following.

a) Given an integer n, set i to the n the element from the top of stack, leaving the stack unchanged
ans

b) set i to the bottom elements of stack, leaving stack empty.

SOLVED PROBLEMS

1. Convert following infix expression to postfix expression.
A ^ B * C – D + E / F/ (G + H)

 Step 1: Parenthesize

((((A ^ B) * C) – D) + ((E / F) / (G + H)))
 1 5 6 7 7 6 5 2 4 4 3 3 2 1

 Step 2: Check the correctness of parenthesizing by numbering
No. of open braces and closed braces
open braces=7 Close braces = 7

 Step 3: Number the braces from right to left with Gove ring operator is +

263Stacks

 Step 4: In postfix operators are placed after the operand and we will scan from
 right to left. Here is the post fix expression.
AB ^ C * D – E F / G H + / +

How did we put the postfix expression
 Scan from right to left i.e follow

Scan from right to left i.e follow

Symbol Gove ring operator Output
Closed brace 1 + +
Closed brace 2 / /
Closed brace 3 + +
H H
G G
Closed brace 4 / /
Closed brace 5 - -
D D
Closed brace 6 * *
Closed brace 7 ^
B B
A A

Solution :

A B ^ C * D –EF/GH+/

2. Convert following infix expression to postfix expression.
((A + B) * C – (D – E)) ^ (F + G)

Parenthesize, number the braces and scan from right to left
((((A + B) * C) – (D – E)) ^ (F + G))
1 3 5 6 6 5 4 4 3 2 2 1

A B + C * D E – – F G + ^
3. Convert following infix expression to postfix expression.

(A + B) * ((C + D) – E) * F
Parenthesize, number braces . Scan from right to left

(((A + B) * ((C + D) – E)) * F)
1 2 5 5 3 4 4 3 2 1

A B + C D + E – * F *
4. Convert following infix expression to postfix expression.

A + B * C + D – E * F
Parenthesize, number braces . Scan from right to left

C & Data Structures by Practice264

(((A + (B * C)) + D) – (E * F))
1 3 4 5 5 4 3 2 2 1

A B C * + D + E F * -

5. Convert following infix expression to postfix expression.
A - B / (C * D ^ E)

 Parenthesize, number braces . Scan from right to left
(A - (B / (C * (D ^ E))))
1 2 3 4 4 3 2 1

A B C D E ^ * / -

Now let us convert infix to prefix. The rules are same as postfix but we will scan from right to left
and place operators in front of operands

6. Convert following infix expression to prefix expression.
A ^ B * C - D + E / F / (G + H)

Step 1: The prefix form of the given expression is

+ - * ^ A B C D / / E F + G H

How did we get the expression
Insert brace brackets to get the desired operations
Check the correctness of brace brackets
Scan from right to left & place the operators in front of operands

 ((((A ^ B) * C) – D) + ((E / F) / (G + H)))
 1 5 6 7 7 6 5 2 4 4 3 3 2 1

Operator / Operand Governing operator Output
open brace 1 + +
open brace 5 - -
open brace 6 * *
open brace 7 ^ ^
A A
B B
C C
D / D
open brace 2 / /
open brace 4 /
E E
F F
open brace 3 + +
G G
H H

265Stacks

7. Convert ((A + B) * C – (D – E)) ^ (F + G) to prefix expression

Parenthesize

Scan right to left

Place operators before operand

^ - * + A B C - D E + F G

We have put it directly we advise you to go through all the steps till the process is clear.

7. Convert (A + B) * ((C + D) – E) * F to prefix expression

* * + A B - + C D E F

8. Convert A + B * C + D – E * F to prefix expression

- + + A * B C D * E F

9. Convert A - B / (C * D ^ E) to prefix expression

- A / B * C ^ D E

10. Apply evaluation algorithm and evaluate following postfix expression
A- (B+C) for A = 1, B =2, C = 3, D = 4

Given post fix expression :B C + A -

Infix = ((B + C) – A)
1 2 2 1

a) A B C + -

Step 1: First three symbols are operands. So push them on to stack

3 2 1

Step 2: Now you will encounter ‘+’ pop two upper most entries 3,2 and perform opera-
tions i.e. 3 + 2 = 5. Push it on to stack

5 1

Step 3: Now you will encounter - . Pop two from Stack and perform output :
1 – 5 = - 4. Note that when we pop two elements b & a. Then we have to perform a
operator b. Hence it will be 1 - 5

Answer = 4

C & Data Structures by Practice266

11.Apply evaluation algorithm and evaluate following postfix expression
A B C + * C B A - + * for A = 1, B =2, C = 3

1) ABC are operands. Therefore Push 3 2 1
2) +. Therefore Pop two elements from stack 2 + 3 = 5 & Push 5 1
3) *. Therefore Pop two elements from stack 5 * 1 = 5 & Push 5
4) C B A are operand. Therefore Push 1 2 3 5
5) -. Therefore Pop two elements from Stack (2 – 1) = 1 Push 1 3 5
6) +. Therefore Pop two elements from Stack (3 + 1) = 4 Push 4 5
7) *. Therefore Pop two elements from Stack (4 * 5) = 20 Push 20

Result = 20

12. Write a program to convert of a number from one base to another using Stack data structure.
We will use stack data structure to convert a number from one base to another base. For example
decimal to binary. Algorithm and code are given below. We are providing a function call to a function
void Convert(int num1, int base1,int base2). We encourage you to build the complete program and
test it to convert it to number of required base.

Algorithm:

Step1: Obtain inputs viz num,base
Step2: rem = num1%base
Step3: push(rem)
Step4: num1= num1/base
Step5: repeat steps 2 to 4 till num ! = 0
Step6: display stack items on LIFO basis

//numconver.c
#include<stdio.h>
#include<conio.h>
#define max 12 //assign varriable max to 10. Number of stack array
// Prototype Declarations
void push(int val);//pushes val on to top of stack
int pop();
int disp();
int isEmpty();
int isFull();
/* NumConvert takes num converts a equivalent binary number. For this activity the function uses a
stack data structure.*/

267Stacks

void NumConvert(int num);
// Stack structure declaration.
struct stack //implement stack as a structure
{ int s[20];

int tos;
};
typedef struct stack stk; // typedefining structure stk as st.
stk st;
void main()
{ int choice,num;

st.tos=-1; // -1 indicates stack is empty.
printf(“\n\tEnter base of source number n\n”);
printf(“\n\t1:decimal number”);

 printf(“\n\t2:octal number”);
printf(“\n\t3:hexa number”);
printf(“\n\t4:exit\n\t”);
scanf(“%d”,&choice);
switch(choice)
{ case 1:
 printf(“\n\tEnter decimal number \t”);

 scanf(“%d”,&num);
 NumConvert(num);

 break;
 case 2:
 printf(“\n\tEnter octal number \t”);

 scanf(“%o”,&num);
 NumConvert(num);

 break;
 case 3:
 printf(“\n\tEnter hexa number \t”);

 scanf(“%x”,&num);
 NumConvert(num);

 break;
 }
 //Stack now contains converted number. Remember Stack is a Last
 //in First out structure.
 disp();
}// end of main
// Function definitions
 void NumConvert(int num)
 { int rem; // remainder
 do
 {
 rem=num%2;// % operator directly gives the remainder
 push(rem);

C & Data Structures by Practice268

 num=num/2;
 }while (num >1);
 if(num == 1)
 { rem=1;

 push(rem);
 }
 }
 void push(int val)
 { st.tos++;//increment sp to next position
 st.s[st.tos]=val;//assigning item to st[st.tos]
 } // end of int push(val).
 int disp()//display function
 { int i;

 printf(“\n”);
 if (isEmpty()== 0)
 { printf(“\tbinary equivalent number is....\n\n”);
 for(i=st.tos;i>=0;i—) //display stack items

 printf(“\t%d”,st.s[i]);
 printf(“\n”);

 }
 else
 { printf(“\n stack is Empty.”);
 }
 return 0;
 }//end disp()
 int isEmpty()
 { if(st.tos==-1) //if top is equals to null

{ //printf(“Stack is Empty”);
return 1;

}
 else
 return 0;
}// end of isEmpty()

int isFull ()
 { if(st.tos==max-1) //if top is equals to max position

{ printf(“Stack overflow”);
return 1;

}
 else
 return 0;
 } // end of isFull()*/
 Output

 Enter base of source number n

269Stacks

 1:decimal number
 2:octal number
 3:hexa number
 4:exit
 1
 Enter decimal number 20
 binary equivalent number is....
 1 0 1 0 0
 <menu>
 2
 Enter octal number 116
 binary equivalent number is....
 1 0 0 1 1 1 0
 <menu>
 3
 Enter hexa number 3f
 binary equivalent number is....

 1 1 1 1 1 1

13. Write an algorithm for conversion of Infix to Prefix Notation:
Algorithm:

Step 1 : Do for each character in the infix string repeat steps 2 to
 5,start from the RHS of the equation i.e starting with the
 last character and proceed to the first
Step 2 : if (character = = operand)
 Append to postfix string
Step 3 : If (character == ‘)’)
 Push it on to stack.

Step 4: If (character == operator)
 {
 While (priority of operator on tos > priority of
 Operator)
 {
 pop()
 append to prefix string
 }
 push(operator)
 }

C & Data Structures by Practice270

Step 5: If (symbol == ‘(‘)
 {
 while(pop()!=’)’)
 {
 pop()
 append to postfix string
 }
 drop “)“ parenthesis
 }

Step 6 : if input string ends then pop and append the stack contents to
 output string.

Step 7 : Exit

14. Write a c program to convert from infix to prefix.c
//in2prefix.c
#include<stdio.h>//preprocessor
#include<string.h>//preprocessor
#include<stdlib.h>//preprocessor
 int preceed(char c);
 void push(char c);
 char pop();
 char stk[30];
 int tos =-1;
 void main()
 { int i,j=0,n,u,v,k;
 char infix[30],postfix[30];
 char c;
 printf(“\n enter the infix expression:”);
 scanf(“%s”,infix);
 n=strlen(infix);
 k=n-1;
 for(i=k;i>=0;i—)
{ if((infix[i]>= ‘a’ && infix[i]<= ‘z’) || (infix[i]>= ‘A’ && infix[i]<= ‘Z’))
 { postfix[j] = infix[i];
 j=j+1;
 } //end of if
 else
 if(infix[i]==’^’||infix[i]==’*’||infix[i]==’/’ ||infix[i]==’+’||infix[i]==’-’)
 { u = preceed(stk[tos]);

271Stacks

 v = preceed(infix[i]);
while(v< u && stk[tos]!= ‘(‘)
{ postfix[j]=pop();
 j=j+1;
 u = preceed(stk[tos]);

 }
 push(infix[i]);
 }//end of else if 1
 else

if(infix [i] == ‘)’)
 {push(infix[i]);
 } // end of else if 2

 else
 if (infix[i] == ‘(‘)
 { c = pop();
 while(c != ‘)’)
 { postfix[j]= c;

j=j+1;
 c= pop();
 } // end of while
 }// end of if else 3
 else

 { printf(“\n\tTHE EQUATION HAS ERROR”);
 exit(0);
 }//end else

 } // end of for
 while(tos!=-1)
 { postfix[j]= pop();
 j=j+1;
 }
 k=j;
 printf(“\nThe equation in PREFIX notation is:”);
 for(i=k-1;i>=0;i—)
 printf(“%c”,postfix[i]);

 printf(“\n”);
}//end main

int preceed(char c)//preceed function
{ int v;
 switch(c)
 { case ‘^’: v=3;

 break;

C & Data Structures by Practice272

 case ‘*’:
case ‘/’: v=2;

 break;
case ‘+’:
case ‘-’: v=1;

 break;
default : v=0;

 break;
 }//end switch
 return(v);
}//end preceed()

void push(char c)
{ tos++;
 stk[tos] = c;
}
char pop()
{ char val;
 val = stk[tos];
 tos—;
 return(val);
}
/*output
 enter the infix expression:((a+(b*c))-d)
The equation in PREFIX notation is:-+a*bcd*/

ASSIGNMENT PROBLEMS

1. Write a C program using pointers to implement a stack with all the operations.
2. Write a program to convert a given prefix expressions to postfix expression using stacks
3. Write a program to evaluate a postfix expression using stack.
4. Convert following infix expressions to prefix and post fix expressions.

a) A-B+C b) A*B+C
c) A+B*C d) A*(B+C)
e) (A-B)*)*(C+D)^E/F f) (A+B)/(C^ (D-E)+F)- G
g) A + (((B + C) * (D – E) – F) / G) ^ (H – J)

5. Convert following prefix expressions in to infix expression.
a) + - * ^ ABCD / / EF+GH
b) ^ - * + ABC – DE + FG
c) * * + AB - + CDEF

273Stacks

d) - + + A * BCD * EF
6. Convert following post fix expressions to infix expression

a) AB ^ C * D - EF / GH + / +
b) AB + C * DE - - FG + ^
c) AB + CD + E - * F *
d) ABC * + D + EF * -

7. With A =1, B =2, C=3, and D = 4 evaluate following post fix expressions
a) AB+C-
b) AB-C+DEF- + *
c) AB + C – BA + C / -
d) ABCDE - + * * EF * -

Solutions to Objective Questions
1) a 2) a 3) False 4) b 5) a 6) c
7) True 8) False 9) c 10) True

This page
intentionally left

blank

11
QUEUES

CHAPTER

 11.1 INTRODUCTION TO QUEUES
 In our daily life, to catch a bus, to with draw money from ATM or to buy a cinema ticket, we form
a queue. Queue is a first in first out FIFO linear data structure Queue is an important data structure for
computer applications even.

Look at the Fig. 11.1a.Initially the queue is empty. Element is serviced (deleted) from the front. An
element is added to the queue at the rear. Condition q.front =0 & q.rear= -1 initially implies that queue
is empty. In 11.1 b arrival of element 25 as first element means both front and rear are assigned to first
position. Fig. 11.1c & 11.1 d show the position of rear and front with each addition to queue. Note that
in Fig. 11.1b, when first element is entered, we have incremented front by 1. After that front is never
changed during addition to queue process. Observe that rear is incremented by one prior to adding an
element to the queue. We will call this process as enque. However to ensure that we do not exceed the
Max length of the queue, prior to incrementing rear we have to check if the queue is full. This can be
easily achieved by checking the condition if (q.rear = = MAX-1)

cêçåí=Z =M
oÉ~ê=Z=JN

M N O P Q R S T U V

Fig. 11.1a An Empty Queue . MAX= 10 , numbered 0 to 9

Ñêçåí

êÉ~ê

M

OR

N O P Q R S T U V

Fig. 11.1b Queue with arrival of first element 2225

C & Data Structures by Practice276

Ñêçåí
êÉ~ê j~ñJN

M

OR PR

N O P Q R S T U V

Fig.. 11.1c Queue with arrival of second element. Rear is incremented by 1

Ñêçåí
êÉ~ê j~ñJN

M

OR PR QR

N O P Q R S T U V

Fig. 11.1d Queue with arrival of 3rd element

Ñêçåí êÉ~êZj~ñJN

M

OR PR QR RR SR TR UR VR NMM NMR

N O P Q R S T U V

Fig. 11.1e Queue full i.e. q.rear = = Max -1

 Deleting an Element from the Queue : Elements are always removed from the front. After removing
the element, front is incremented by one. Fig. 11.1 f shows status of front and rear after two
deletions from Fig. 11.1d. Observe that positions vacated by front marked as * are unusable by queue
any further. This is one of the major draw back of linear queue array representation. In Fig. 11.1 g, we
have carried out three deletions for 25,35,and 45. after deleting 45, we find queue is empty and the
condition for this queue state is q.rear is less than q.front. At this stage, we can reinitialize the queue
by setting q.front=0 and q.rear = -1 and thus reclaim the unused positions marked with *.

Ñêçåí

êÉ~ê
j~ñJN

M

G G QR

N O P Q R S T U V

Fig. 11.1f Queue after two deletions 25 & 35 from Fig. 11.1d

Ñêçåí

êÉ~ê j~ñJN

M

G G G

N O P Q R S T U V

Fig. 11.1g Queue after deletions of 25, 35, and 45 from Fig. 11.1d

277Queues

Number of elements in the queue: At any instance rear – front + 1

Queues can be represented in the following ways
 Static implementation using array representation.
 Dynamic implementation using Linked List representation

Operations available on the Queue are
Addition of an element – Enque
Deletion of an element - dequeue

 11.2 ARRAY REPRESENTATION OF QUEUE
Queue is defined as array of maximum size MAX. While inserting and deleting elements from the
queue, we have to check for empty and full conditions.

11.2.1 Algorithm for Addition of An Element to the Queue
 Initialize the que q.front = 0 and q.rear = -1
Step1 : Check if queue is full by calling isFull()
 i.e. if q.rear =MAX-1 declare queue as full & exit
Step3 : Else
 Rear=Rear +1
 q.rear=val; // insert value on to queue

11.2.2 Algorithm for Deletion of An Element to the Queue
Step 1: Check if queue is empty by checking the condition
 If ((q.rear < q.front) then declare queue is empty and exit
Step 2.Else
 Item = q.front ; display item
 Front = front +1
Step 3: // check if removed item is the last element in the queue
 If (q.rear < q.front)
 // all items removed. Hence re-initialize the queue
 q.front =0;
 q. rear = -1

C & Data Structures by Practice278

Example 11.1 QueArray.c for array implementation of Queue

//queuearr.c
#include<stdio.h>
#define MAX 20
 void enqueue(int val);
 int dequeue();
 int isEmpty();
 void display();
 void exit();
 struct queue
 { int data[MAX];

 int front,rear;
 };
 typedef struct queue que;
 que q;

void main()
{ int ch,val,x;

q.rear=-1;
q.front=0;
do

 {
 printf(“\n\t\t\t QUEUE USING ARRAYS “);
 printf(“\n\t\t\t —— —— ———\n”);
 printf(“\n\t1.ENQUEUE”);
 printf(“\n\t2.DEQUEUE”);
 printf(“\n\t3.DISPLAY”);
 printf(“\n\t4.EXIT\n”);
 printf(“\nEnter your choice:\t”);
 scanf(“%d”,&ch);
 switch(ch)
 { case 1:

 printf(“enter value:”);
 scanf(“%d”,&val);
 enqueue(val);

 display();
 break;

 case 2:
 x=dequeue();
 if(x!=-1)
 printf(“dequed value=%d\n”,x);

279Queues

 display();
 break;

 case 3:display();
 break;

 case 4:exit();
 default:printf(“INVALID CHOICE!!\n”);

 break;
 }//end of switch
 }while(ch!=4);
}
void enqueue(int val)
{ q.rear++;//increment rear to point to next empty slot
 q.data[q.rear]=val;
}

int dequeue()
{ int k,ans;
 k=isEmpty();
 if(k==0)//queue is not empty
 { ans=q.data[q.front];

q.front++;
 }
 else
 { printf(“Queue is empty\n”);
 ans=-1;
 }
 return(ans);
}

int isEmpty()
{ int ans;
 if(q.rear<q.front)

 ans=1;
 else

 ans=0;
 return(ans);
}

void display()
{ int ans,i;

 printf(“****data elements in queue****\n”);
 ans=isEmpty();

C & Data Structures by Practice280

 if(ans ==0)
 { for(i=q.front;i<=q.rear;i++)
 printf(“%d\n”,q.data[i]);

 }
 else

printf(“queue is empty\n”);
}
/*output
 QUEUE USING ARRAYS

 ----- -------- ----------
1. ENQUEUE
2. DEQUEUE
3. DISPLAY
4. EXIT

Enter your choice: 1
enter value:10
****data elements in queue****
10

Enter your choice: 1
enter value:20
****data elements in queue****
10
20

Enter your choice: 1
enter value:30
****data elements in queue****
10
20
30

Enter your choice: 3
****data elements in queue****
10
20
30

Enter your choice: 2
dequed value=10
****data elements in queue****
20

281Queues

30

Enter your choice: 4*/

 11.3 DYNAMIC REPRESENTATION OF QUEUES USING LINKED
LISTS

11.3.1 Create A New Node: A node will have data assigned to it and a pointer to its successor.
Node is the name of the new node we are going to insert.

åçÇÉ=éçáåíÉê

Ç~ í~
åÉñí

åçÇÉ

Fig. 11.2 Node structure
struct queue

 { int data
 struct queue * next ; // *next is a pointer to next node
 }; // This type if definition is called self
 referential structure.
 typedef struct queue que; // we will be able to use short name que

We also need two pointers called front and rear. Create them using statements
 que *front =NULL
 que *rear =NULL

11.3.2 Adding Node to Empty Queue

oÉ~ê
nìÉìÉ=áë=bãéíó

kì ää

åçÇÉ

cêçå í

NMM

Fig. 11.3a Addition of first element to queue

Queue is empty and node to be inserted is the first node. Therefore assign front and rear to node

 Adding node to queue.
 rear

C & Data Structures by Practice282

kìää kì ää

oÉ~ê
êÉ~ê

åçÇÉ

NRM
NMM

cêçå í

Fig. 11.3b Addition of element to queue

 Step 1: rearànext = node ; assign node to rear ->next
 Step 2: rear = node // we have shown movement of pointers by ……… line.

11.3.3 Deleting An Element from the Queue.

cêçå í qÉãé

NM OM PM QM

oÉ~ê

kì ää

Fig. 11.4 Deleting a node from queue

Step 1 : Store Front in Temp pointer
Step 2 : Move Front to next node

Front=Front->next
Step 3 : Remove temp->data and display to user
Step 4 : If Front = = NULL, set Rear = NULL. Front=Null means queue is empty
Step 5 : Free Temp node.

We now provide complete listing for queue implementation using linked list in the next section.

Example 11.2 quelinkl.c program to implement queue using linked lists
//program to implement queue using linked lists
//qinkl.c
include<stdio.h>
include<stdlib.h>

 struct queue
 { int data;
 struct queue *next;
 // struct quueue *front;

// struct queue *rear;

283Queues

 };
 typedef struct queue que;

 que *front=NULL;
 que *rear =NULL;

 void enqueue(int val);
 int dequeue();
// int isEmpty();
 void display();
 // void exit();

 void main()
 {
 int ch,val,x;
 do
 { printf(“\n\t\t\t QUEUE USING LINKED LISTS “);
 printf(“\n\t\t\t —— —— ——— ——\n”);
 printf(“\n\t1.ENQUEUE”);
 printf(“\n\t2.DEQUEUE”);
 printf(“\n\t3.DISPLAY”);
 printf(“\n\t4.EXIT\n”);
 printf(“\nEnter your choice:”);
 scanf(“%d”,&ch);
 switch(ch)
 { case 1:

 printf(“\nenter value:”);
 scanf(“%d”,&val);
 enqueue(val);

 display();
 break;

 case 2:
 x=dequeue();
 if(x!=-1)
 printf(“dequed value=%d\n”,x);
 display();
 break;

 case 3:display();
break;

 case 4:exit(1);

 default:printf(“INVALID CHOICE!!\n”);
 break;

 }
 }while(ch!=4);

C & Data Structures by Practice284

}

 void enqueue(int val)
 { que *node;
 node=(que *)malloc(sizeof(que));//creation of new node
 node->data=val;
 node->next=NULL;
 if(front==NULL)//check if initially empty
 front=node; //if empty assign front to newly created node
 else

 rear->next=node;
 rear=node;
 }
 int dequeue()
 { int val;
 que *p;
 if(front==NULL)//check if initially empty

 {
 printf(“ list is empty\n”);

 val=-1; //if queue is empty return -1 as answer
 }

 else
 { p=front;

 front=p->next; //make front point to the next element
 val= p->data;

 if(front==NULL) //if front now points to null it means an empty queue
 rear=NULL; //so make rear also to point to null

 free(p); //now free p i.e. release the mem location for reuse
 }

 return(val);
 }

 void display()
 { que *temp;

 temp=front; // we will use temp for traversing the queue
 printf(“\n ****queue elements are****\n”);

 if (temp == NULL)
 printf(“\n queue is empty”);

 else
 {
 while (temp->next!=NULL)
 { printf(“\n %d”,temp->data);

 temp=temp->next;

285Queues

 } //end of while
 //now last element stiil left for display
 printf(“\n %d”,temp->data);

 }//end of if
 }
/*output QUEUE USING LINKED LISTS
 —— —— ——— ——

 1.ENQUEUE
 2.DEQUEUE
 3.DISPLAY
 4.EXIT

Enter your choice:1
enter value:10
 ****queue elements are****
 10

Enter your choice:1
enter value:20
 ****queue elements are****
 10
 20

 Enter your choice:1
enter value:30
 ****queue elements are****
 10
 20
 30
Enter your choice:3
 ****queue elements are****
 10
 20
 30
Enter your choice:2
dequed value=10
 ****queue elements are****
 20
 30
Enter your choice:4*/

C & Data Structures by Practice286

 11.4 CIRCULAR QUEUE-ARRAY REPRESENTATION

Linear queue discussed so far in section 11.2 suffers from one major drawback. When the first
element is serviced, the front is moved to next element. However, the position vacated is not available
for further use. Thus, we may encounter a situation, wherein program shows that queue is full, while
all the whose elements have been deleted are available but unusable, though empty. The situation is
shown in fig 11.5 As a solution, we would consider a superior data structure called circular queue.
Look at the fig 11.6.showing an empty circular queue. Observe that both front and rear are initialized to
the same position MAX-1 i.e. position9. For programmer only positions available are from 0 to 8. W
have sacrificed one position, shown as * in the diagram, in order that we could identify the conditions
empty and full for circular queue. Consider following two statements

cêçå í

êÉ~êa~í~xj^uJN z

aÉ äÉ íÉÇ =Ñêçã =èìÉìÉ

aÉäÉ íÉÇ =Ñêçã =èìÉìÉ

Fig. 11.5 Linear queue–major drawback

 Circular queue is empty if q.rear = = q.front

 For checking Full condition, we will increment q.rear and then check
 if q.rear= = q.front

In a circular queue, there is no fixed positions for front and rear.

287Queues

oÉ~êZ Ñêçåí
a~í~xVz

a~í~xUz

a~í~xTz

a~í~xSz

a~í~xRz
a~í~xQz

a~í~xPz

a~í~xOz

a~í~xNz

a~í~xMz

G

Fig. 11.6 : An empty circular queue capacity max = 12.

Front always points to beginning of the queue but it does not point to first element. It is always point
to one less than first element of the queue.

On Insert operation, rear is incremented by 1.

On delete front pointer is decremented by 1 and front now points to next element in the queue.
In Fig. 11.7, insertion of new element is simple operation as queue is NOT full i.e. rear != front. As we
are dealing with circular queue, there is a need to wrap around rear if it exceeds Max -1 value. For this
activity, we will use %(modulus operator) that give us remainder directly.
 Rear = (Rear +1)%(Max)
 Rear = (1+1)%10 = 2. Therefore insert element 45 at rear =2

ÑêçåíZj^uJN=a~í~xV z

a~í~xUz OR

PR

QR

a~í~xNz

áåëÉêíÉÇ =î~äìÉ
åÉï=éçëáíáçå
Ñç ê=êÉ~ê

a~í~xMz

G

Fig. 11.7 : Insertion in a circular queue that is not full

For checking overflow condition, shown in Fig. 11.8 we will first increment q.rear and check if q.rear
= = q.front. If condition is true, it implies that queue is full. Then we will decrement q.rear by one,

C & Data Structures by Practice288

which we have incremented prior to checking and return to calling function. For example, we want to
add element 105 to the queue. as a first step, increment q.rear. Now, we find q.rear is equal to q.front.(9).
It means that queue is full Hence we will restore q.rear to original position by decrementing by one. To
check if circular queue is full, we will check if (q.rear = = q.front). Observe that condition is same as
that of checking for empty circular queue.

ÑêçåíZj^u JN=a ~í~ xV z

êÉ~ê=Ç~ í~ xUz OR

NMM

VR

UR

TR SR

RR

PR

QR

a~í~xNz

a~í~xMz

G

 Fig. 11.8 Insertion in a circular queue that is full

Example 11.3. cirque.c Circular Queue implementación.
//PROgram for cirqular queue operations using arrays
#include<stdio.h> //preprocessor
define max 5 //define varriable max = 5
int insert(); //declaring insert function
int delet(); //declaring delete function
int disp(); //declaring display function
struct queue //implementing queue as a structure
{

int q[max]; //queue structure array type variable
int f,r; //declaring front and rear

}qu;
int main() //initializing main function
{

int ch=0;
qu.f=0;
qu.r=0;
while(ch!=4)//menu display
{

printf(“\n\n\t\tMENU”);
printf(“\n\n\t1: INSERTION”);
printf(“\n\t2: DELETION”);

289Queues

printf(“\n\t3: DISPLAY”);
printf(“\n\t4: EXIT”);
printf(“\n\n\tEnter your choice\t”);
scanf(“%d”,&ch);//scan your choice
switch(ch)
{

case 1: insert();
break;

case 2: delet();
break;

case 3:
disp();
break;

}//end switch
}//end while

return 0;
}//end main
//function definitions
int insert()//insert function
{

int item;
if((qu.r+1)%max==qu.f) //check for queue overflow
{

printf(“\n\n\tQueue is overflow”);
return 0;

}//end if
else
{
/* if(qu.r==max) //if the entered position is last then

 qu.r=0;*/

qu.r=(qu.r+1)%max; //increment next position
printf(“\n\n\tEnter an element to insert”);
scanf(“%d”,&item); //scan item
qu.q[qu.r]=item; //assign the item to given position
 /*if(qu.f==-1) qu.f++;*/

 }//end else
return 0;
}//end insert function
int delet()//delete function
{

int item;
if(qu.f==qu.r)

C & Data Structures by Practice290

{
printf(“\n\n\tThe queue is Underflow”);
return 0;

}//end if

qu.f=(qu.f+1)%max;//in circular queue front is always empty
item=qu.q[qu.f]; //assign queue[front] to item
if(qu.f==qu.r) //front is equal to rear
{

qu.r=0;
qu.f=0;

}//end if()
/*if(max==qu.f)

qu.f=1;
else

qu.f++;*/
printf(“\n\n\tThe deleted item is %d”,item);

return 0;
}//end delete()
int disp()//display function
{

int i;
printf(“\n\n”);
if(qu.f==0 && qu.r==0) //front = -1 and rear = -1
{

printf(“\n\n\tThe queue is Empty”);
return 0;

}//end if()
printf(“\n\n\tThe elements in the queue are”);
if(qu.r < qu.f) //if rear is less than front
{
 for(i=qu.f+1;i<max;i++)//print the values from front to queue max

printf(“\n\t%d”,qu.q[i]);
 for(i=0;i<=qu.r;i++) //print the values from 0th position to rear

printf(“\n\t%d”,qu.q[i]);
}//end if
else
for(i=qu.f+1;i<=qu.r;i++)//print the values from front to rear
printf(“\n\t%d”,qu.q[i]);

 return 0;
}//end display

/* output
 MENU

291Queues

 1: INSERTION
 2: DELETION
 3: DISPLAY
 4: EXIT
 Enter your choice 1
 Enter an element to insert10

 Enter your choice 1

 Enter an element to insert20

 Enter your choice 1

 Enter an element to insert40

 Enter your choice 3

 The elements in the queue are
 10
 20
 40

 Enter your choice 2

 The deleted item is 10

 Enter your choice 3

 The elements in the queue are
 20
 40
*/

OBJECTIVE QUESTIONS

1. Queue follows which of the following
a) LILO b) FIFO
c) LIFO d) None of the above

2 Queue what type of data structures
a) Static b) Dynamic
c) Linear d) None

C & Data Structures by Practice292

3. Queue empty condition is checked by
a) rear<front b) front<rear
c) rear=front d) rear=0

4. The no. of elements in a queue at any given time will be equal to
a) rear-front+1 b) rear-front-1
c) rear-front+2 d) rear-front-2

5. The order of storage in a queue is sequential True/fasle
6. Abstract data type implies that it is independent of implementation True/False
7. Queue is static data structure

True/False
8. A self referential structure holds

a) pointer to next structure of same type b) pointer to data of next
c) next node d) pointer to next node

9. After inserting an element in the queue, the rear is
a) incremented b) decremented
c) no change d) made = front

10. Queue empty condition is checked by
a) rear<front b) front<rear
c) rear=Max d) rear=0

REVIEW QUESTIONS

1. What is a queue? Explain the various operations performed on queues with suitable algorithms.(i.e.
insertion, deletion).

2. Write in detail Circular queue.
3. Explain how do you check if the queue is full or empty.
2. Explain two major applications of queue.
4. What are the advantages of a circular queue over a linear queue?

SOLVED EXAMPLES

1. Write a program to perform operations on circular queues using linked lists
#include<stdio.h>
/*
 Create a structure named “qlinklist” using a pointer link
 for creating a link between two successive nodes
 Declare two pointers for this: front and rear for moving through the queue

293Queues

 A temporary pointer: temp
*/
struct qlinklist
{
 int data;
 struct qlinklist *link;
}*front,*rear,*temp;

/*
 A function for inserting a node into the queue using linked list
*/
int enqueue()
{
 printf(“Give data to be inserted:\t”);
 temp=(struct qlinklist*)malloc(sizeof(struct qlinklist));
 scanf(“%d”,&temp->data);
 /*
 The above three steps insert a value into the temporary pointer’s memory
 */

 printf(“%d IS INSERTED!!”,temp->data);
 /*
 If no node exists then both rear and front are NULL

Hence,it will be the first node in the queue
So,make its front’s link as NULL

 Else
Make rear to be consisting of the data inserted
and then make its rear link to NULL

 */
 if(rear==NULL&&front==NULL)
 {
 rear=temp;
 front=temp;
 rear->link=front;
 //To create a circular link for the first node
 }
 else
 {
 rear->link=temp;
 rear=temp;
 rear->link=front;
 //To create a circular link for the last created node
 }return 0;
}

C & Data Structures by Practice294

/*
 A function for deleting a node from the circular queue using linked list
*/
int dequeue()
{
 /*
 Check if front is NULL and the rear is NULL
 If NULL then the queue would be empty
 If not so,if rear is equal to front
 Make them NULL
 Else
 Delete the temporary node pointing to front and make its link
 as front
 and then free the pointer containing this temporary value
 and link the last node to front
 */
 if(front==NULL&&rear==NULL)
 {
 printf(“Cannot delete from empty list!!!\n”);
 }
 else if(front==rear)
 {
 printf(“%d IS DELETED!!!\n”,front->data);
 front=rear=NULL;
 }
 else
 {
 printf(“%d IS DELETED!!!\n”,front->data);
 temp=front;
 front=front->link;
 rear->link=front;
 free(temp);
 }return 0;
}

/*
 A function to display the queue
*/
int display()
{
 /*
 If front and rear are not existing then the list is empty
 Else display the queue from front till temporary pointer points to front

295Queues

 */
 if(front==NULL&&rear==NULL)
 {
 printf(“Cannot display empty list!!!\n”);
 }
 else
 {
 printf(“DATA IN QUEUE IS:\n”);
 temp=front;
 do
 {
 printf(“%d\t”,temp->data);
 temp=temp->link;
 }while(temp!=front);
 }return 0;
}

int main()
{
 int ch;
 do
 { printf(“\n\t\t\t CIRCULAR QUEUE USING LINKED-LISTS “);
 printf(“\n\t\t\t ———— —— —— ——————\n”);
 printf(“\n\t1.ENQUEUE”);
 printf(“\n\t2.DEQUEUE”);
 printf(“\n\t3.DISPLAY”);
 printf(“\n\t4.EXIT\n”);
 printf(“\nEnter your choice:\t\n”);
 scanf(“%d”,&ch);
 switch(ch)
 {

 case 1:enqueue();
break;

 case 2:dequeue();
break;

 case 3:display();
break;

 case 4:exit();
 default:printf(“INVALID CHOICE!!\n”);

 break;
 }
 }while(1);
return 0;
}
/*output

C & Data Structures by Practice296

 CIRCULAR QUEUE USING LINKED-LISTS
 --------- ------------ -----------------

 1.ENQUEUE
 2.DEQUEUE
 3.DISPLAY
 4.EXIT

Enter your choice: 1
Give data to be inserted: 200
200 IS INSERTED!!

Enter your choice:1
Give data to be inserted: 300
300 IS INSERTED!!

Enter your choice:1
Give data to be inserted: 400
400 IS INSERTED!!

Enter your choice:3
DATA IN QUEUE IS:
200 300 400
Enter your choice:2
200 IS DELETED!!!

Enter your choice:3
DATA IN QUEUE IS:
300 400 */

2. Represent a linked list as an array and build routines and program for all basic operations
like create, insert and delete.

//clistarr.c
/program to implement circular linked list using an array
//and demonstrate insertion and deletion operations
#include<stdio.h>
struct clist
{ int data;
 int next; //index of next element in the list
};
typedef struct clist nodes;
nodes node[100]; //create 100 instances of the above structure
int curr=0; //index of the current node which is free

297Queues

int head=0; //points to the start of the list initially 0 but could change
 //based on insertions and deletions
void createlist();
void insert(int n,int val);//inserts val to the right of n in the list
void delet(int val);
void printlist();

void main()
{

int i,val,n;
for(i=0;i<100;i++)
 node[i].next=i+1; //link all nodes n their natural order

 node[99].next=0; //make the last node point to the first node in the list

 createlist();
 printlist();

printf(“\nEnter value to insert and vlaue of node after which it has to be inserted”);
scanf(“%d%d”,&val,&n);
insert(n,val);

 printlist();
printf(“\nEnter value to be deleted:”);
scanf(“%d”,&val);

 delet(val);
 printlist();
}
void createlist()
{ int i,n;
 printf(“Enter no of elements<maximum of 100>”);
 scanf(“%d”,&n);
 for(i=0;i<n;i++)
 {printf(“Enter element:”);
 scanf(“%d”,&node[i].data);
 }
 node[i-1].next=0; //make the last node of list point to first node
 curr=i; //set current node to i as this the next free node
}
void insert(int n,int val)
{ int i=head;
 int p;
 while(node[i].data!=n) //search for node with value n
 { i=node[i].next;
 if(i==head)

C & Data Structures by Practice298

 break;
 }
 if(node[i].data!=n)
 printf(“Not a valid insertion as %d is not in the list\n”,n);
 else
 { p=curr; //get the next available free node

curr=node[p].next; //assign curr to the next free node
 node[p].data=val;
 node[p].next=node[i].next;

node[i].next=p;
 }
}
void delet(int val)
{ int i,j,previous;
 i=head;//initialize to start of list
 while(node[i].data!=val) //search for the node
 { previous=i;

 i=node[i].next;
 if(i==head)
 break;

 }
 if(node[i].data!=val)

printf(“Not a valid deletion as %d is not in the list\n”,val);
 else
 if(i==head) //if node to be deleted is the starting node
 { head=node[i].next; //shift head to the next element

 j=head;
 while(node[j].next!=i) //search for the last element in list
 j=node[j].next;

 node[j].next=head; //make the last node point to the new head
 }
 else //if node to be delted is between two nodes
 { node[previous].next=node[i].next;
 node[i].next=curr;

 curr=i; //the last two operations return the deleted node to empty pool
 //so that it can be used again

 }

299Queues

}
void printlist()
{ int i=head;
 while(node[i].next!=head)
 {printf(“%5d”,node[i].data);
 i=node[i].next;
 }
 printf(“%5d”,node[i].data);
}
/*Output:
Enter no of elements<maximum of 100>5
Enter element:23
Enter element:67
Enter element:54
Enter element:12
Enter element:89
 23 67 54 12 89
Enter value to insert and vlaue of node after which it has to be inserted34 67
 23 67 34 54 12 89
Enter value to be deleted54
 23 67 34 12 89 */

ASSIGNMENT PROBLEMS

1. Show how to implement a queue of integers in c by using an array int Q[queuesize],where Q[0]
is used to indicate the front of queue, Q[1] is used to indicate rear and where Q[2] through
Q[queuesize-1] contain elements on the queue.. show how to initialize such on array to represent
the empty queue and write routines remove, insert and empty for such as implementation.

2. Implement priority queue using array implementation. We need to provide 3 buffers(arrays).
Array 1 stores highest priority elements, array 2 stores second priority elements, and array3 stores
least priority elements. Write a program to display the queues as per following schedule

Display array2 for after 3elements of array 1 are displayed.

Display array3 for after 3elements of array 2 are displayed.

Solutions to Objective Questions
1) b 2) c 3) a 4) a 5) True 6) True
7) False 8) a 9) a 10) c

This page
intentionally left

blank

12NON LINEAR DATA
STRUCTURES—TREES

CHAPTER

 12.1 TREES WHY – WHAT – HOW
The data structures like stack, linked lists etc are linear data structures, where as in real life, we will
come across non linear structures like hierarchical data structure. For Example like Grand Father – Son
– Grand Son in a family or CEO – Vice President – General Manager – Manager in a company. Consider
an hierarchical structure followed in a typical college shown in Fig. 12.1. These kind of hierarchical
structures can best be represented by data structure called Tree. Let us understand more about these
structures. Look at the picture, in case you want to know the details of student number 10 of Section A
of CSE branch, you need to approach Principal – Dean academics – Head CSE – In Charge Students –
Section A. In the process you have not bothered to visit Dean admin, thus saving access time. It is this
feature which makes Trees a most useful and widely used data structure in Computer Science in the
areas of data storage, parsing, evaluation of expressions, and compiler design.

píìÇÉåíf`
pÉÅíáçå=^

píìÇÉåíf`
pÉÅíáçå=_

eÉ~Ç=fqeÉ~Ç=`pb qê~åëéçêí ^Çã áëëáçåë

aÉ~å=^Çã áåaÉ~å=^Å~ÇÉãáÅë

mêáåÅáé~ä

Fig. 12.1 A tree organization

C & Data Structures by Practice302

 12.2 TERMINOLOGY AND DEFINITIONS OF TREE
Root is at the top of the hierarchy. Principal is the root. Parent Node : Each node except root has a
parent. Head CSE node is parent node for in charge Admin and in charge Students. Principal, being root,
does not have parent.

Levels: Note that we have also indicated levels starting at the root as level 0. Number of nodes at a
level m is given by 2 ^ m.

Child Nodes or Siblings: Observe that a node has 2 or 1 or Nil child nodes directly under it. Nodes
with same parent are called siblings.Dean Computing has two siblings Head IT and Head CSE. Observe
that Section A, Section B and In Charge Admin have no child nodes.

Note that Principal, Deans, HODs, and In charges are all called Nodes. Nodes with siblings are called
the internal nodes. Inter connecting lines are called Edges.

Leaf Nodes: Nodes with no Child nodes are called leaf nodes or terminal nodes or external nodes. . For
example section A and Section B, In charge admin are all leaf nodes.

Trees: Collection of nodes and Edges. One of the nodes is a root, and remaining nodes are partioned as
collection of sub trees, each of which is a tree by itself.

^

_ `

a b Ñ

f

ihg

ed

Fig. 12.2 A tree

Edge or Branch: A line drawn from node to its child is called an edge. Note that there are 12 Nodes.
But edges are 12.
 No of edges = no of nodes - 1

303Non Linear Data Structures—Trees

Path : It is a list of vertices from root node to leaf node connected by edges. For example A-C-F-I-J
is a path. Note that there is only one path between nodes.
Path Length : No of edges in a path. The path A-C-F-I-J has a path length of 4.

Depth of node : It is the path length from the root. Node J is at depth 4 and node D has a depth of 2

Degree of a Node : The number of edges incident on a node is called degree of a node. Node C is of
degree 4 and node D has a degree of 3.

 12.3 BINARY TREES
A binary tree is an empty or comprises a root node and two disjoint sub trees left sub tree(LST) and
right sub tree(RST). LST and RST are themselves binary trees. Look at the fig 12.3 depicting a full
binary tree.

M

O

S

NQNPNONNNMVUT

P

N

Q R

NR OPNV OTNT ORON OVNS OQOM OUNU OSOO PM

Fig. 12.3 A full binary tree with nodes = 31, levels = 5 (level 0 to level 4)

Some interesting properties of full Binary Trees.

 Number of levels L = 5 (level 0 to level 4)
 Number of nodes N = 2 ^ L – 1 = 32 -1 = 31 (numbered 0 to 30)
 Number of nodes in a level m = 2 ^ m ;
 Number of nodes at level 3 = 2 ^3 = 8

C & Data Structures by Practice304

 Number of internal nodes = Sum of nodes at (L0+L1+L2+L3) levels = 1+2+4+8=15
 Number of external nodes (leaf nodes) = No of Internal nodes + 1 = 15 +1 = 16.
 Height /Depth of Binary Tree with x internal node = log2 (x +1) = log2 (15+1) = 4

Fig. 12.4 & 12.5 Examples of binary trees

Representation of Binary Tree. We can represent a binary tree using linked list representation as
 struct Tree
 { int data;
 struct Tree *lptr; // pointer to left child
 struct Tree *rptr; // pointer to right child
 struct Tree *parent; // pointer to parent
 };
 typedef struct Tree node;
Look at the Fig. 12.6, where in we have shown a node. Observe that Left and Right pointers are
pointing to NULL. Node holds a value 12.

iÉÑí=éç áå íÉ ê

kì ää

NM o áÖÜ í=mç áå íÉ ê

kì ää

Fig. 12.6 Representation of a node

305Non Linear Data Structures—Trees

 12.4 BINARY SEARCH TREE
Binary Search Tree (BST) is an ordered Binary Tree in that it is an empty tree or value of root node is
greater than all the values in Left Sub Tree(LST) and less than all the values of Right Sub Tree (RST).
Right and Left sub trees are again binary sub trees by themselves.(Fig. 12.7a and b)

V

T

Q

P

NO

NP

NR

NT

OM

NU

NV
NQ NU

NTONVR

U

OM

OO

12.7 a .Example of BST 12.7 b Not a BST. Node 17 violates RST rule

We will be using BST structure to demonstrate features of Binary Trees. The operations possible on a
binary tree are

a) Create a Binary Tree
b) Insert a node in a Binary tree
c) Delete a node in a Binary Tree
d) Search for a node in Binary search Tree
e) Traversals of a Binary Tree

i) In Order traversal
ii) Pre Order Traversal
iii) Post Order Traversal

12.4.1 Creating Binary Tree
 Algorithm
 Step 1: Do step 2 to 3 till stopped by the user
 Step 2 : Obtain a new node and assign value to the node
 Step 3 : Insert on to a Binary Search tree
 Step 4 : return

12.4.2 Insertion A Node in A Binary Search Tree (BST)
 InsertNode (node, value)
 { Check if Tree is empty
 If (empty)

C & Data Structures by Practice306

 Enter the node as root

 / / find the proper location for insertion
 Else
 If (value < value of current node)

 { If (left child is present)
 {
 InsertNode(LST, Value);
 }
 else
 allocate new node and make LST pointer point to it
 }
 else if (value > value of current node)
 { If (right child is present)
 {
 InsertNode(RST, Value);
 }
 else
 allocate new node and make RST pointer point to it
 }
 }

12.4.3 Deleting A Node from A Binary Search Tree. There are three distinct cases
to be considered when deleting a node from a BST. They are

a) Node to be deleted is a leaf node. Make its parent to point to NULL and free the node. For
example to delete node 4. Right pointer of 5 to point to NULL and free(node4).

T

R

P Q

V

Fig. 12.8a Deleting a leaf node

307Non Linear Data Structures—Trees

b) Delete a node with one child only, either left child or Right child. For example we will delete
node 9 that has only a right child. The right pointer of node 7 is made to point to node 12. The
new tree after deletion is shown in 12.8 c.

T

R V

NN

NN

T

R

Fig. 12.8 b Deletion of node with only one child Fig. 12.8 c New tree after deletion

c) Node to be deleted has two children. The replace the value with smallest value in the right
sub tree or largest value of left sub tree. We will replace it smallest value of Right sub tree.
Node 9 that has two children,needs to be deleted from Fig. 12.9.

12.4.4 Searching A Binary Search Tree

 SearchNode(int val, node * root)
 {
 Step 1: set root to pointer P
 Step 2 : Repeat step 3 – 4 till completion
 Step 3 if val = data of P
 Search is successful
 else
 { if val < data of P
 Set P pointing to LPTR
 Else
 Set P pointing to RPTR
 }
 Step 4 : If (P= = NULL)
 Value does not exist
 Step 5 : Return
}

C & Data Structures by Practice308

OM

NR

V

NN

Q

S

T

OM

NR

T

Q

NN

T

Fig. 12.9a Node 9 to be deleted Fig. 12.9b Replace smallest of right sub tree
 i.e replace 9 with 6

OM

NR

T

Q

NN

T

Fig. 12.9c Adjust the pointer of 11 to point to 7 and free empty node procedure at Fig. 12.8b

We now provide complete c program covering aspects of creation, insertion,deletion,and searching of a binary
search tree.

//Example 12.1 : bintree.c
// a program for creation, deletion,insertion, and searching a binary search tree
#include<stdio.h>
#include<stdlib.h>
struct Tree
{ int data;
 struct Tree *lptr; // pointer to left child

struct Tree *rptr; // pointer to right child
}; // will be pointing to NULL in case of leaf nodes
typedef struct Tree node;
//Function prototypes

309Non Linear Data Structures—Trees

 node *createtree(node *root);
 node *insert(int n,node *root);
 void search(int n,node *root);
 node *delet(int n,node *root);
 int isLeft(node *parent,node *p);
 int isRight(node *parent,node *p);
 void main()
{ node *root=NULL; //initially initialize root to null
 int n,n1,ch;
 while(1)

{ printf(“\n\n\t\tMENU”);
 printf(“\n\t1: CREATE\n\t2: INSERTION\n\t3: DELETION\n\t4:SEARCH”);

printf(“\n\t5: EXIT”);
printf(“\n\n\tEnter your choice\t”);
scanf(“%d”,&ch);
switch(ch)
{

case 1:root=NULL;
root=createtree(root);
break;

case 2: printf(“\n Enter Number”);
 scanf(“%d”,&n);
 root=insert(n,root);
break;

case 3:printf(“\nEnter number to be deleted:”);
 scanf(“%d”,&n1);

 root=delet(n1,root);
 break;
case 4: printf(“\nEnter no to be searched:”);

scanf(“%d”,&n);
 search(n,root);

break;
case 5: exit(0);

 break;
default: printf(“\n Invalid choice press between 1 and 8 only”);

}//end switch
}//end while

}//end main

 node *createtree(node *root)
 {

C & Data Structures by Practice310

 int n;
 do{ printf(“\nEnter number<0 to stop>:”);

 scanf(“%d”,&n);
 if(n!=0)

root= insert(n,root);
 }while(n!=0);

 return(root);
 }

node *insert(int n,node *root)
{
 node *temp1=NULL;
 node *temp2=NULL;
 node *p=NULL;
 p=(node *)malloc (sizeof(node));//dynamic allocation of memory foe each element
 p->data=n; //initialize contents of the structure
 p->lptr=NULL;
 p->rptr=NULL;

 //A new node has been created now our task is to insert this node
 //in the appropriate place. If this is the first node to be created
 //then this is the root of the tree.

 if(root==NULL)
 root=p;

 else
 // We will use temp1 for traversing the tree.
 // Temp2 will be traversing parent
 // p is the new node we have created.

{ temp1=root;
 while(temp1!=NULL)

 { temp2=temp1; // store it as parent
 // Traverse through left or right sub tree
 if(p->data < temp1->data)

 temp1 = temp1->lptr; // left subtree
 else

 if(p->data > temp1->data)
 temp1 = temp1->rptr; // right sub tree

 else
 {

 printf(“\n\tDUPLICATE VALUE”);
 free(p);
 break;

 }//end else
 } //end of while

311Non Linear Data Structures—Trees

 // we have traversed to the end of tree
 // node ready for insertion
 if(temp1 == NULL)
 { // attach either as left son or right son of parent temp2

 if(p->data<temp2->data)
 temp2->lptr=p; // attach as left son

 else
 temp2->rptr=p; // attach as right son

 }
 printf(“\n successful insertion\n”);
 }//end of else

 return(root);
 }//end of create tree

void search(int n,node *root)
{
 node *p;
 p=root; //initially assign p to root
 while(n!=p->data)

 { if(n<p->data) //if n is less than curr node data
 p=p->lptr; //traverse the left sub tree

 else
p=p->rptr; //else if n is greater than curr node data

 //travel right subtree
 if(p==NULL) //if temp1 points to null it implies no value in the tree

 break; //so exit loop
 }

 if(p==NULL)
 printf(“value is not present in the tree\n”);
 else
 printf(“\n value found”);

}

node *delet(int n,node *root)
{

node *temp1=NULL; //
node *temp2=NULL; // temp1 and temp2 are used for traversing the tree
node *p=NULL; // p node indicates current node that has to be deleted
int val;
int ans;

 temp1=root; //initialize temp1 to root
 while(n!= temp1->data)

C & Data Structures by Practice312

 { temp2=temp1; //store temp1 in temp2
 if(n<temp1->data) //if n is less than curr node data

 temp1=temp1->lptr; //traverse the left sub tree
 else
 temp1=temp1->rptr; //else if n is greater than curr node data

 //travel right subtree
 if(temp1==NULL) //if temp1 points to null it implies value not present in the tree
 break; //so exit loop

 }

/*after the successful completion of the above loop temp1 will be pointing to the node having the data
and temp2 will be pointing to the parent of this node, please note in case temp1 is pointing to root then
temp2 will be pointing to NULL as root has no parent*/

 if(temp1==NULL)
 printf(“\n value not present in the tree”);

 else
 { // store in p, the node to be deleted
 p= temp1;

 //checking if node to be deleted is a leaf node
 if(p->lptr==NULL && p->rptr==NULL)

 { printf(“\n Deleting leaf node with value: %d”,p->data);
 //if the leaf node is root of the tree no need to check if it is left or

 //right son
 if(temp2==NULL)

 printf(“\n Deleting root of the tree which is a leaf node”);
 // check if leaf node is left son or right son of parent
 else
 { ans=isLeft(temp2,p);

if(ans==0) // p is the left son
 temp2->lptr=NULL;

 ans=isRight(temp2,p);
 if(ans==0) // p is the right son
 temp2->rptr=NULL;

 }
 free(p);
 }//end of if deletion of leaf node

 //checking if node to be deleted is a non leaf node with one child
 else
 if(p->lptr==NULL || p->rptr==NULL)
 { printf(“\n Deleting node with one child with value %d”,p->data);

313Non Linear Data Structures—Trees

 if(p->lptr !=NULL)//implies left child is present
 {

 if(temp2==0)
 { printf(“\n Deleting root with only left subtree”);
 root=p->lptr;
 }//end of if
else
 {
 ans=isLeft(temp2,p);
 if(ans==0) // p is left son of parent
 // assign left pointer of parent to left pointer of p
 temp2->lptr=p->lptr;

 ans=isRight(temp2,p);
 if(ans==0) // p is right son of parent
 // assign right pointer of parent to left pointer of p

temp2->rptr=p->lptr;
}//end of else

}//end of if

if(p->rptr !=NULL)//implies right child is present
{ if(temp2==0)
 { printf(“\n Deleting root with only right subtree”);

root=p->rptr;
 }//end of if
 else
 { ans=isLeft(temp2,p);

if(ans==0) // p is left son of parent
// assign left pointer of parent to right pointer of p
 temp2->lptr=p->rptr;

 ans=isRight(temp2,p);
 if(ans==0) // p is right son of parent
 // assign right pointer of parent to right pointer of p
 temp2->rptr=p->rptr;
}//end of else

 }//end of if
 free(p);

 }//end of else if
 //checking if node to be deleted is non leaf node with two children
 else if(p->lptr!=NULL && p->rptr!=NULL)
 { printf(“\n Deleting node with two children with value=%d”,p->data);
 //finding node with least value in the right tree of the node
 printf(“\n Finding minimum value in right sub tree\n”);
 temp1=p->rptr;

C & Data Structures by Practice314

 while(temp1->lptr !=NULL)
 temp1=temp1->lptr;

 // temp now points to least value in right sub tree of node p
 printf(“\n min value=%d”,temp1->data);
 printf(“\n Deleting and re-adjusting”);
 val=temp1->data;
 delet(val,root); // recursive call

 p->data=val;
 }
 printf(“\n successful deletion\n”);
 }//end of else
 return(root);
}//end of delete

//This routine checks if a node is the left child of the parent
//arguments passed are the parent and current node pointers
//returns 0 if successful else returns 1
 int isLeft(node *parent,node *p)
 { int ans;
 if(parent->lptr==p)

 ans=0;
 else
 ans=1;
 return ans;
 }
//This routine checks if a node is the right child of the parent
//arguments passed are the parent and current node pointers
//returns 0 if successful else returns 1
 int isRight(node *parent,node *p)
 {int ans;
 if(parent->rptr==p)
 ans=0;
 else
 ans=1;
 return ans;
 }
/*output
 MENU

1 : CREATE
2 : INSERTION
3 : DELETION
4 : SEARCH
5 : EXIT

315Non Linear Data Structures—Trees

 Enter your choice 1
Enter number<0 to stop>:10
Enter number<0 to stop>:20
Enter number<0 to stop>:30
Enter number<0 to stop>:40
Enter number<0 to stop>:50
Enter number<0 to stop>:60
Enter number<0 to stop>:0

Enter your choice 4
Enter no to be searched:50
value found

Enter your choice 3
Enter number to be deleted:50
Deleting node with one child with value 50
successful deletion

Enter your choice 4
Enter no to be searched:50
value is not present in the tree

Enter your choice 2
Enter Number50
Successful Insertion.

Enter your choice 4
Enter no to be searched:50
value found */

 12.5 TREE TRAVERSALS
Tree being a non linear data structure, there is no fixed mode or sequence of traversal. There are three
modes for traversal of a tree. All algorithms use recursive call feature. They are

 In Order Traversal
 Traverse Left sub Tree inorder
 Visit the root
 Traverse the Right sub tree inorder

 Pre Order Traversal (Depth First Order – Stack data structure)
 Visit the root
 Traverse left sub Tree preorder.
 Traverse the right sub tree preorder

C & Data Structures by Practice316

 Post Order Traversal (Breadth First Traversal – queue data structure)
 Traverse left sub Tree postorder.
 Traverse the right sub tree postorder
 Visit the root

12.5.1 Tree Traversal Problems

1. Construct a tree for the expression given and give pre order and post order expression. ((
a+ (b / c) ^ ((a + b) * C))

 Step 1 Include brackets as per rule of algebra and precedence of operators and
 check correctness of parenthesis.
 Step 2 ; Number the parenthesis as shown
 ((a+ (b / c)) ^ ((a + b) * C))
 1 2 3 3 2 4 5 5 4 1

 Step 3: Assign governing operator ^ of outer most bracket (no 1) to root. Assign
 expression to the left as LST and expression to the right of ^ as RST

 ^

((a+ (b / c)) ((a + b) * C))
 2 3 3 2 4 5 5 4

Inorder Traversal Traverse Left sub Tree inorder
 Visit the root
 Traverse the Right sub tree inorder
Identify the root : ^
Consider LST. Root now is +
 Traverse LST again till you reach node A (LPTR of Node A points to NULL)

 Visit the root +
 Consider the RST. Root now is /

 Traverse LST again till you reach node B (LPTR of Node B points to NULL)
 Visit the root –
Continue till you visit all the nodes in the tree.

317Non Linear Data Structures—Trees

Step 4 Continue Step 3 for LST and RST to get the tree

^

H

{

G

`H

_^
`

L

_

Inorder Traversal : (a+ (b / c) ^ ((a + b) * C). Note that this is nothing but infix notation, you
have studied in chapter on stacks.

Preorder Traversal: Visit the root
 Traverse left sub Tree preorder.
 Traverse the right sub tree preorder

 ^
 LST ROOT = +
 LST preorder is A(A lptr points to null)
 RST Root is /
 LST preorder is B(B lptr points to null)
 RST preorder is C(C lptr points to null)
 Till now the expression is ^+A/BC

 Continue till you visit all the nodes to realize pre order travel

Preorder Expression ^+A/BC*+ABC

Post order Traversal : Traverse left sub Tree postorder.
 Traverse the right sub tree postorder
 Visit the root

 LST root is +
 LST A
 RST root /
 LST is B
 RST is C
 Visit root is /
 Expression till now is ABC/
 Continue further to realize the full expression
 ABC/+AB+C*^

C & Data Structures by Practice318

12.5.2 Construction of Binary Search Tree Problems

1. The sequence of numbers are : 25 15 17 19 7 9 11 16 42 54 6 . Construct a BST. *
represents latest addition to tree from the array

OR

OR

NRG

N O P Q

NR

OR

NR

NTG

OR

NT

NVG

OR

NR

TG NT

NVG

OR

NR

T

VG

NT

NV

RCS T

OR

NR

T NT

V NV

U

V

NNG

OR

NR

T NT

NVNSGV

NN

319Non Linear Data Structures—Trees

OR

NR

T

V

NN NM
NN

NS NV

NT

QOG
NR

OR

QO

T

V NS

NN

NV

NT RQG

We have shown th making of a tree for the problem at 12.5 in the above diagrams. It may be noted that
node entry in to the tree is shown by *

Example 12.2 : Tree traversals using recursion.

//bstrecur.c
#include<stdio.h> //preprocessor
#include<stdlib.h>//preprocessor
struct node//structure definition
{

int info;
struct node *lptr,*rptr;

};
struct node *create(int,struct node *);
struct node *insert(struct node *);
//function declarations
int preorder(struct node *);
int inorder(struct node *);
int postorder(struct node *);

void main()//main function
{

struct node *root=NULL;
int n,c=0;
while(c!=6)
{

printf(“\n\n\t\tMENU”);
printf(“\n\t1: CREATE\n\t2: INSERTION\n\t3: POSTORDER”);

C & Data Structures by Practice320

printf(“\n\t4: INORDER\n\t5: PREORDER\n\t6: EXIT”);
printf(“\n\n\tEnter your choice\t”);
scanf(“%d”,&c);
switch(c)
{

case 1: printf(“\n\tHow many elements to enter\t”);
scanf(“%d”,&n);
root=NULL;
root=create(n,root);
break;

case 2: root=insert(root);
break;

case 3: postorder(root);
break;

case 5: preorder(root);
break;

case 4: inorder(root);
break;

}//end switch
}//end while

}//end main
struct node *create(int n,struct node *root)//create function
{

struct node *p,*parent,*temp;
int i;
for(i=1;i<=n;i++)
{

p=(struct node *)malloc(sizeof(struct node));
printf(“Enter data\t”);
scanf(“%d”,&p->info);
p->lptr=p->rptr=NULL;
if(root==NULL)

root=p;
else
{

temp=root;
while(temp!=NULL)
{parent=temp;
 if(p->info < temp->info)
 temp=temp->lptr;
 else

 if(p->info > temp->info)
temp=temp->rptr;

321Non Linear Data Structures—Trees

 else
 {

printf(“\n\tDUPLICATE VALUE”);
free(p);
break;

 }//end else
}//end while
if(temp==NULL)
{
if(p->info < parent->info)

parent->lptr=p;
else

parent->rptr=p;
 }//end if

}//end else
}//end for
return(root);

}//end function
struct node *insert(struct node *root) //insert function
{

struct node *p,*temp,*parent;
p=(struct node *)malloc(sizeof(struct node));
printf(“\n\tEnter element\t”);
scanf(“%d”,&p->info);//scan elements
p->lptr=p->rptr=NULL;
if(root==NULL)

root=p;
else
{

temp=root;
while(temp!=NULL)
{

parent=temp;
if(p->info < temp->info)

temp=temp->lptr;
else

if(p->info > temp->info)
temp=temp->rptr;

else
{

printf(“\n\t DUPLICATE NODE\n”);
free(p);
root=insert(root);

C & Data Structures by Practice322

break;
}//end else

}//end while
if(temp==NULL)
{

if(p->info < parent->info)
parent->lptr=p;

else
if(p->info > parent->info)

parent->rptr=p;
}//end if

}//end else
return(root);

}//end function
int preorder(struct node *root)//preorder function
{

if(root==NULL)
{

printf(“\n\tEMPTY TREE”);
return 0;

}//end if
printf(“%5d”,root->info);
if(root->lptr!=NULL)

preorder(root->lptr);
if(root->rptr!=NULL)

preorder(root->rptr);
return 0;
}//end preorder
int inorder(struct node *root)//inorder function
{

if(root==NULL)
{

printf(“\n\tEMPTY TREE”);
return 1

;
}//end if
if(root->lptr!=NULL)

inorder(root->lptr);
printf(“%5d”,root->info);
if(root->rptr!=NULL)

inorder(root->rptr);
return 0;
}//end inorder

323Non Linear Data Structures—Trees

int postorder(struct node *root)
{

if(root==NULL)
{

printf(“\n\tEMPTY TREE”);
return 0;

}//end if
if(root->lptr!=NULL)

postorder(root->lptr);
if(root->rptr!=NULL)

postorder(root->rptr);
printf(“%5d”,root->info);

return 0;
 }//end postorder
/*output

 MENU
1 : CREATE
2 : INSERTION
3 : POSTORDER
4 : INORDER
5 : PREORDER
6 : EXIT

 Enter your choice 1

 How many elements to enter 15
Enter data 14
Enter data 15
Enter data 4
Enter data 9
Enter data 7
Enter data 18
Enter data 3
Enter data 5
Enter data 16
Enter data 4
DUPLICATE VALUE
Enter data 20
Enter data 17
Enter data 9
DUPLICATE VALUE
Enter data 14

C & Data Structures by Practice324

DUPLICATE VALUE
Enter data 5
DUPLICATE VALUE

 Enter your choice 4
 3 4 5 7 9 14 15 16 17 18 20
 Enter your choice 5
 14 4 3 9 7 5 15 18 16 17 20
 Enter your choice 3
 3 5 7 9 4 17 16 20 18 15 14
 Enter your choice */

 12.6 NON RECURSIVE ALGORITHMS FOR BINARY SEARCH
TREES

You have studied recursive algorithms for creation and tree traversals in section 12.5. In this section
we will study non recursive implementation. We will use either Do … While or While (1) control
structure to achieve same functionality.

12.6.1 Inorder Traversal Traverse Left sub Tree inorder
 Visit the root
 Traverse the Right sub tree inorder

We will be using stack data structure to store the nodes for retrieval later.

Inordernr (node * root)
{ //define a stack of type node to hold maximum of MAX and initialize the stack
 node *stack[MAX], *cur ; // current, we will use for traversal
 tos = -1; // tos is top of stack

Step 2; Repeat steps 3 to 12 till loop breaks
Step 3 : do steps 4 to 6 while cur !=NULL
Step 4: Check if stack is full. if full exit
Step 5 : Else push it on to stack stack [++tos] = cur;
Step 6 : cur =cur->lptr

 Step 7 : check if tos is empty. If empty break the loop.
 Step 8 : Un stack the node from the top of stack.
 Step 9 : cur=stack[tos—];
 Step 10: print the node for output
 Step 11: // now traverse the right sub tree in order
 Step 12 : cur=cur->rptr
 }
12.6.2 Pre Order Traversal (Depth First Order)

 Visit the root
 Traverse left sub Tree preorder.

325Non Linear Data Structures—Trees

 Traverse the right sub tree preorder
 preordernr (node * root)

{ //define a stack of type node to hold maximum of MAX and initialize the stack
 node *stack[MAX], *cur ; // current, we will use for traversal
 tos = -1; // tos is top of stack
 Step 1 : repeat step 2 to 11 till cur !=NULL
 Step 2: repeat Step 3 to 6 till cur!=NULL
 Step 3: print the node for output
 Step 4: push cur on to stack
 stack[++tos]=cur
 Step 5: // now traverse the left sub tree in order
 Step 6: cur=cur->lptr
 Step 7 : repeat steps 7 to 10 till cur !=NULL
 Step 8 : // pop the node from top of stack
 Step 9 : cur=stack[tos—];
 Step 10:// now traverse the right sub tree.
 Step 11 : cur=cur->rptr;
 // We will loop back to perform preorder traversal with cur
 }

12.6.3 Post Order Traversal (Breadth First Order)

Traverse left sub Tree postorder.
 Traverse the right sub tree postorder
 Visit the root

postordernr (node * root)
{ //define a stack of type node to hold maximum of MAX and initialize the stack
 node *stack[MAX], *cur ; // current, we will use for traversal
 tos = -1; // tos is top of stack

 Step 1 : repeat step 2 to11 till cur !=NULL
 Step 2: repeat Step 3 to5 till cur!=NULL

 // now traverse the left sub tree post order
 Step 3: Check if stack is full. if full exit
 Step 4 : Else push it on to stack stack [++tos] = cur;
 Step 5 : cur =cur->lptr

 // now traverse the right sub tree post order
 Step 7 : cur=cur->rptr
 Step 8 : check if tos is empty. If empty break the loop.
 Step 9: Un stack the node from the top of stack.
 Step 10: cur=stack[tos—];
 Step 11: print the node for output

C & Data Structures by Practice326

 }
Example 12.3. itertraves.c We present a program for Inorder and preorder traversals using iterative
(non recursive) program. Post order traversal, we leave it to reader for completion.

// itertraves.c.A Program to demonstrate tree traversal using iteration

#include<stdio.h>
#include<stdlib.h>

struct Tree
{
 int data;
 Tree *lptr;
 Tree *rptr;
};
typedef struct Tree node;

node *stk[30];
int tos=-1;
 //Routines associated with tree
node *createtree(node *root);
node *insert(int n,node *root);
void preorder(node * root);
void inorder(node * root);

void main()
{ int ch;

 node *root=NULL;
 node *p=NULL;

printf(“Enter values to create tree\n”);
 root=createtree(root);

 while(1)
 { printf(“\n1: Inorder\n2: Preorder\n3: Exit”);

 printf(“\nEnter Choice:”);
 scanf(“%d”,&ch);

 switch(ch)
 {
 case 1: printf(“\ninorder sequence”);

 inorder(root);
 break;

 case 2:printf(“\npreorder sequence\n”);

327Non Linear Data Structures—Trees

 preorder(root);
 break;

 case 3: exit(0);
 break;
 default : printf(“\nenter choice between 1 and 3 only”);

 }
 }//end of while

}//end of main
void preorder(node *root)
{ int flag=0;

node *p;
p=root;
while(1)
{

while(p!=NULL)
{ printf(“\t%d”,p->data);

 tos++;
 stk[tos]=p; //push element onto stack
 if(p->lptr==NULL && p->rptr==NULL)
 flag=1; //if left child is present for current node set flag to 1
 p=p->lptr;
}
if(flag==1) //leaf node has been inserted into stack it so pop it out
{ p=stk[tos];
 tos—;
 flag=0;
}
if(tos==-1)
 break;
p=stk[tos]; //get parent node from stack
tos—;

 p=p->rptr; //now traverse to the right of parent
}

}
void inorder(node * root)
{ tos=-1;

node *p;
 p=root;
 while(1)

{ while(p!=NULL)
 { tos++;
 stk[tos]=p;

p=p->lptr;

C & Data Structures by Practice328

 }
 if(tos==-1)
 break;

p=stk[tos];
tos—;
printf(“\t%d”,p->data);
p=p->rptr;

}
}
node *createtree(node *root)
 { int n;

do{ printf(“\nEnter number<0 to stop>:”);
 scanf(“%d”,&n);

 if(n!=0)
root= insert(n,root);

 }while(n!=0);
 return(root);
 }
node *insert(int n,node *root)
{
 node *temp1=NULL;
 node *temp2=NULL;
 node *p=NULL;

 p=(node *)malloc (sizeof(node));//dynamic allocation of memory foe each element
 p->data=n; //initialize contents of the structure
 p->lptr=NULL;
 p->rptr=NULL;

 //A new node has been created now our task is to insert this node
 //in the appropriate place.If this is the first node to be created
 //then this is the root of the tree.

 if(root==NULL)
 root=p;

 else
 // We will use temp1 for traversing the tree.
 // Temp2 will be traversing parent
 // p is the new node we have created.
{ temp1=root;

 while(temp1!=NULL)
 { temp2=temp1; // store it as parent
 // Traverse through left or right sub tree
 if(p->data < temp1->data)

329Non Linear Data Structures—Trees

 temp1 = temp1->lptr; // left subtree
 else

 if(p->data > temp1->data)
 temp1 = temp1->rptr; // right sub tree

 else
 {

 printf(“\n\tDUPLICATE VALUE”);
 free(p);
 break;

 }//end else
 } //end of while
 // we have trvered to the enode of tree
 // anode ready for insetion
 if(temp1 == NULL)
 { // attach either as left son or right son of parent temp2

 if(p->data<temp2->data)
 temp2->lptr=p; // attach as left son

 else
 temp2->rptr=p; // attach as right son

 }
}//end of else

 return(root);
 }//end of create tree
/*Output:
Enter values to create tree
Enter number<0 to stop>:45
Enter number<0 to stop>:23
Enter number<0 to stop>:56
Enter number<0 to stop>:67
Enter number<0 to stop>:78
Enter number<0 to stop>:12
Enter number<0 to stop>:25
Enter number<0 to stop>:47
Enter number<0 to stop>:0
1: Inorder
2: Preorder
3: Exit
Enter Choice:1
inorder sequence
 12 23 25 45 47 56 67 78
1: Inorder
2: Preorder
3: Exit
Enter Choice:2
preorder sequence

C & Data Structures by Practice330

 45 23 12 25 56 47 67 78 */

OBJECTIVE QUESTIONS

1. A binary tree can have empty left sub tree and empty right sub tree TRUE/FALSE)
2. Formula for number of nodes in a complete binary tree, given no of levels L is……..
3. Number of nodes in a 5 level binary tree is ………………
4. Degree of a node in a binary tree is ………………………………………………………………
5. Given that a full binary tree has n nodes, number of edges are………………………..
6. Nodes with no siblings are called ……………………. Nodes
7. Depth of a node is defined as a length of the node from …………
8. Number of nodes in a depth d full binary tree is given by …………………
9 Binary Search tree is an …………….. binary tree.

REVIEW QUESTIONS

1. Construct a binary tree for the following preorder and inorder traversals. Explain with a neat dia-
gram:

 (a)Preorder: ABDIEHJCFKLGM
 Inorder: DIBHJEAFLKCGM

 (b)Preoeder:ABDEFCGHJLK
 Inorder:DBFEAGCLJHK

2. Write an algorithm for each of the following
(a) In order traversal (b) preorder and
(c) post order traversal

3. Write a C program to implement binary tree traversals
4. Write an algorithm to count the no of leaf nodes in a binary tree. What is its computing time?
5. Write an algorithm, given the address of an input binary tree, prints the equivalent infix expression

with minimum number of parenthesis.
6. Give a brief note about different representations of binary tree.
7. Prove that the total no of edges in a complete binary tree with n terminal nodes is 2(n-1)
8. Formulate non –recursive and recursive algorithm for postorder traversal of binary tree.
9. Write an algorithm for determining whether two binary trees a and b are similar based on the

traversal method
10. Write in detail binary tree

331Non Linear Data Structures—Trees

11. Distinguish Binary tree and Binary Search trees.
12. Write non recursion algorithm and code for

a) insert in to a binary search tree
 b) Search for a key node in a binary search tree

13. Write non recursive and recursive algorithms and C Code for following traversals
a) Preorder b) Post order
c) In order

14. Write algorithm/code for traversing a binary tree level by level.[Hint: start at the root and use
array[queue] structure to determine next node.

15. Write an algorithm/code for finding height of a tree.
16. Write a C function to determine number of internal and external(leaf) nodes
17. Write a C function to test if two given trees are identical.[Hint: in order traversal]
18. Write a C function to find a mirror image of a given tree. Right child and left child of parent have

to be interchanged to obtain the mirror image.

SOLVED PROBLEMS

1. Write a program to find the height of full binary tree.

//nodedepth.c
#include<stdio.h>
#include<stdlib.h>

struct Tree
{ int data;
 struct Tree *lptr;
 struct Tree *rptr;
};
typedef struct Tree node;

node *createtree(node *root);
node *insert(int n,node *root);
void finddepth(int n,node *root);

void main()
{
 int n;

node *root=NULL;
root=createtree(root);

 printf(“Enter node:”);

C & Data Structures by Practice332

scanf(“%d”,&n);
finddepth(n,root);

}
node *createtree(node *root)
{ int n;
 do{ printf(“\nEnter number<0 to stop>:”);
 scanf(“%d”,&n);
 if(n!=0)
 root= insert(n,root);

 }while(n!=0);
 return(root);
 }
node *insert(int n,node *root)
{
 node *temp1=NULL;
 node *temp2=NULL;
 node *p=NULL;

 p=(node *)malloc (sizeof(node));//dynamic allocation of memory foe each element
 p->data=n; //initialize contents of the structure
 p->lptr=NULL;
 p->rptr=NULL;

 //A new node has been created now our task is to insert this node
 //in the appropriate place.If this is the first node to be created
 //then this is the root of the tree.

 if(root==NULL)
 root=p;

 else
 // We will use temp1 for traversing the tree.
 // Temp2 will be traversing parent
 // p is the new node we have created.
{ temp1=root;

 while(temp1!=NULL)
 { temp2=temp1; // store it as parent
 // Traverse through left or right sub tree
 if(p->data < temp1->data)

 temp1 = temp1->lptr; // left subtree
 else

 if(p->data > temp1->data)
 temp1 = temp1->rptr; // right sub tree

 else
 {

333Non Linear Data Structures—Trees

 printf(“\n\tDUPLICATE VALUE”);
 free(p);
 break;

 }//enode else
 } //end of while
 // we have trvered to the end of tree
 // node ready for insetion
 if(temp1 == NULL)
 { // attach either as left son or right son of parent temp2

 if(p->data<temp2->data)
 temp2->lptr=p; // attach as left son

 else
 temp2->rptr=p; // attach as right son

 }
}//end of else

 return(root);
 }//end of insert tree

void finddepth(int n,node *root)
{
 node *p=root;
 int i=0;
 while(p->data!=n)
 { if(p->data>n)

 p=p->lptr;
 else
 p=p->rptr;
 i++;

 if(p==NULL)
 {printf(“node does not exist in the tree”);
 exit(1);
 }
}

 printf(“Depth=%d”,i);
}
/*Output:
Enter number<0 to stop>:45
Enter number<0 to stop>:23
Enter number<0 to stop>:56
Enter number<0 to stop>:67
Enter number<0 to stop>:12
Enter number<0 to stop>:78
Enter number<0 to stop>:0

C & Data Structures by Practice334

Enter node:78
Depth=3 */

2. Write a program to find the height of the full binary tree.
//treeheight.c.Program to compute height of a full binary tree
#include<stdio.h>
#include<stdlib.h>
#include<math.h>

struct Tree
{ int data;
 struct Tree *lptr;
 struct Tree *rptr;
};
typedef struct Tree node;

node *createtree(node *root);
node *insert(int n,node *root);
int inorder(node *root);
void findheight(node *root);

void main()
{ node *root=NULL;
 printf(“Create a full Binary Tree\n”);
 root=createtree(root);
 findheight(root);
}
node *createtree(node *root)
 {
 int n;

 do{ printf(“\nEnter number<0 to stop>:”);
 scanf(“%d”,&n);
 if(n!=0)

root= insert(n,root);
 }while(n!=0);

 return(root);
 }
node *insert(int n,node *root)
{
 node *temp1=NULL;
 node *temp2=NULL;
 node *p=NULL;

335Non Linear Data Structures—Trees

 p=(node *)malloc (sizeof(node));//dynamic allocation of memory foe each element
 p->data=n; //initialize contents of the structure
 p->lptr=NULL;
 p->rptr=NULL;

 //A new node has been created now our task is to insert this node
 //in the appropriate place.If this is the first node to be created
 //then this is the root of the tree.

 if(root==NULL)
 root=p;

 else
 // We will use temp1 for traversing the tree.
 // Temp2 will be traversing parent
 // p is the new node we have created.
{ temp1=root;

 while(temp1!=NULL)
 { temp2=temp1; // store it as parent
 // Traverse through left or right sub tree
 if(p->data < temp1->data)

 temp1 = temp1->lptr; // left subtree
 else

 if(p->data > temp1->data)
 temp1 = temp1->rptr; // right sub tree

 else
 {

 printf(“\n\tDUPLICATE VALUE”);
 free(p);
 break;

 }//enode else
 } //end of while
 // we have trvered to the end of tree
 // node ready for insetion
 if(temp1 == NULL)
 { // attach either as left son or right son of parent temp2

 if(p->data<temp2->data)
 temp2->lptr=p; // attach as left son

 else
 temp2->rptr=p; // attach as right son

 }
}//end of else

 return(root);
 }//end of insert tree
//For a full binary tree height=level-1,where level=log2(no of nodes+1);

C & Data Structures by Practice336

//log2(x) can be rewritten as log10(x)/log2(x)
void findheight(node *root)
{ int i,height;
 i=inorder(root);
 height=(log10(i+1)/log10(2))-1;
 printf(“\nheight of tree =%d”,height);
}
//inorder traversal is used to calculate the total number of nodes
int inorder(node *root)//inorder function
{ static int i=0; //This is a recursive program if we use just int then it will increment only once

if(root==NULL)
{printf(“\nEMPTY TREE”);
 return 0;
}//end if
if(root->lptr!=NULL)

inorder(root->lptr);
i++;
if(root->rptr!=NULL)

inorder(root->rptr);
return i;
}//end inorder
/*Output:
Create a full Binary Tree
Enter number<0 to stop>:45
Enter number<0 to stop>:23
Enter number<0 to stop>:56
Enter number<0 to stop>:12
Enter number<0 to stop>:25
Enter number<0 to stop>:50
Enter number<0 to stop>:67
Enter number<0 to stop>:0

height of tree =2*/

3. Write a program to sort the given array of numbers using BST properties
//treesort.c
//Program to sort numbers using Trees
#include<stdio.h>
#include<stdlib.h>

struct Tree
{ int data;
 struct Tree *lptr;

337Non Linear Data Structures—Trees

 struct Tree *rptr;
};
typedef struct Tree node;

node *createtree(node *root);
node *insert(int n,node *root);
void sort(node *root);//this is same as inorder traversal of a tree

void main()
{
 node *root=NULL;
 root=createtree(root);
 printf(“Sorted List.......\n”);
 sort(root);
}
node *createtree(node *root)
 {
 int n;

 do{ printf(“\nEnter number<0 to stop>:”);
 scanf(“%d”,&n);
 if(n!=0)

root= insert(n,root);
 }while(n!=0);

 return(root);
 }
node *insert(int n,node *root)
{
 node *temp1=NULL;
 node *temp2=NULL;
 node *p=NULL;

 p=(node *)malloc (sizeof(node));//dynamic allocation of memory foe each element
 p->data=n; //initialize contents of the structure
 p->lptr=NULL;
 p->rptr=NULL;

 //A new node has been created now our task is to insert this node
 //in the appropriate place.If this is the first node to be created
 //then this is the root of the tree.

 if(root==NULL)
 root=p;

 else
 // We will use temp1 for traversing the tree.

C & Data Structures by Practice338

 // Temp2 will be traversing parent
 // p is the new node we have created.
{ temp1=root;

 while(temp1!=NULL)
 { temp2=temp1; // store it as parent
 // Traverse through left or right sub tree
 if(p->data < temp1->data)

 temp1 = temp1->lptr; // left subtree
 else

 if(p->data > temp1->data)
 temp1 = temp1->rptr; // right sub tree

 else
 {

 printf(“\n\tDUPLICATE VALUE”);
 free(p);
 break;

 }//enode else
 } //end of while
 // we have trvered to the end of tree
 // node ready for insetion
 if(temp1 == NULL)
 { // attach either as left son or right son of parent temp2

 if(p->data<temp2->data)
 temp2->lptr=p; // attach as left son

 else
 temp2->rptr=p; // attach as right son

 }
}//end of else

 return(root);
 }//end of create tree
void sort(node *root)
{
 if(root==NULL)
 {printf(“\nTree is empty”);
 exit(1);
 }

 if(root->lptr!=NULL)
 sort(root->lptr);

 printf(“%5d”,root->data);
if(root->rptr!=NULL)
 sort(root->rptr);

}

339Non Linear Data Structures—Trees

/*Output:
Enter number<0 to stop>:45
Enter number<0 to stop>:23
Enter number<0 to stop>:12
Enter number<0 to stop>:67
Enter number<0 to stop>:56
Enter number<0 to stop>:89
Enter number<0 to stop>:0
Sorted List.......
12 23 45 56 67 89 */

4. Write a program to swap left sub tree and a right sub tree.

//swaptree.c.Program to swap left and right binary subtrees
#include<stdio.h>
#include<stdlib.h>

struct Tree
{ int data;
 struct Tree *lptr;
 struct Tree *rptr;
};
typedef struct Tree node;

node *stk[30];
int tos=-1; //stack data structure

node *createtree(node *root);
node *insert(int n,node *root);
void inorder(node *root);
void swap(node *root);

void main()
{

node *root=NULL;
 root=createtree(root);

printf(“inorder traversal before swapping: “);
 inorder(root);
 swap(root);
 printf(“\ninorder traversal after swapping: “);

inorder(root);
}
void swap(node *root)

C & Data Structures by Practice340

{
 node *temp,*p;
 int flag=0,flag1=0;
 p=root;
 tos++;
 stk[tos]=p; //initially push root into the stack

 while(tos !=-1)//while stack is not empty
 {
 while(flag==0 && p->lptr!=NULL)

 { p=p->lptr;
 tos++;
 stk[tos]=p;
 flag1=1;
 }

 //while traversing the last leaf node is also pushed on the stack,so we use
 //flag1 to indicate if traversal has occured if flag1=1 it means that traversal
 //has occured and the node on the top of the stack is not a parent node but a
 //leaf node which has to be removed
 if(flag1==1)
 { p=stk[tos]; //so remove it from the stack
 tos—;
 flag1=0; //reset flag1
 }

 p=stk[tos]; //retrive the last parent from the stack
 tos—;

 //swap the left and right children
 temp=p->lptr;

 p->lptr=p->rptr;
 p->rptr=temp;

 //after swapping if the left child exists then its children also have to be swapped
//so push left child onto stack

 if(p->lptr !=NULL)
 {p=p->lptr;
 tos++;
 stk[tos]=p;
 flag=0;
 }

 //if left child does not exist then set flag=1 this disables traversing the tree again
//and simply retrives the last parent from the stack and processes it
 else

 flag=1;
 }

341Non Linear Data Structures—Trees

}
node *createtree(node *root)
 {
 int n;

 do{ printf(“\nEnter number<0 to stop>:”);
 scanf(“%d”,&n);
 if(n!=0)

root= insert(n,root);
 }while(n!=0);

 return(root);
 }
node *insert(int n,node *root)
{
 node *temp1=NULL;
 node *temp2=NULL;
 node *p=NULL;

 p=(node *)malloc (sizeof(node));//dynamic allocation of memory foe each element
 p->data=n; //initialize contents of the structure
 p->lptr=NULL;
 p->rptr=NULL;

 //A new node has been created now our task is to insert this node
 //in the appropriate place.If this is the first node to be created
 //then this is the root of the tree.

 if(root==NULL)
 root=p;

 else
 // We will use temp1 for traversing the tree.
 // Temp2 will be traversing parent
 // p is the new node we have created.

{ temp1=root;
 while(temp1!=NULL)

 { temp2=temp1; // store it as parent
 // Traverse through left or right sub tree
 if(p->data < temp1->data)

 temp1 = temp1->lptr; // left subtree
 else

 if(p->data > temp1->data)

C & Data Structures by Practice342

 temp1 = temp1->rptr; // right sub tree
 else

 {
 printf(“\n\tDUPLICATE VALUE”);
 free(p);
 break;

 }//enode else
 } //enode of while
 // we have trvered to the enode of tree
 // anode ready for insetion
 if(temp1 == NULL)
 { // attach either as left son or right son of parent temp2

 if(p->data<temp2->data)
 temp2->lptr=p; // attach as left son

 else
 temp2->rptr=p; // attach as right son

}

}//enode of else

 return(root);
 }//end of create tree
void inorder(node *root)//inorder function
{

if(root==NULL)
{printf(“\n\tEMPTY TREE”);
 exit(1);
}
if(root->lptr!=NULL)

inorder(root->lptr);
printf(“%5d”,root->data);
if(root->rptr!=NULL)

inorder(root->rptr);
}//end inorder

/*Output:
Enter number<0 to stop>:45
Enter number<0 to stop>:23
Enter number<0 to stop>:56

343Non Linear Data Structures—Trees

Enter number<0 to stop>:67
Enter number<0 to stop>:47
Enter number<0 to stop>:25
Enter number<0 to stop>:12
Enter number<0 to stop>:10
Enter number<0 to stop>:0
inorder traversal before swapping: 10 12 23 25 45 47 56 67
inorder traversal after swapping: 67 56 47 45 25 23 12 10 */

Solutions to Objective Questions

1) TRUE 2) 2^L -1 3) 31 4) no of incident edges
5) 6) n+1 7) leaf 8) root 9) 2^(d+1) -1

This page
intentionally left

blank

13
 13.1 INTRODUCTION

Graph is an important mathematical representation of a physical problem, for example finding optimum
shortest path from a city to another city for a traveling sales man, so as to minimize the cost. Unlike
trees, which you have learnt, graphs can have loops or cycles. A graph can have unconnected node.
Further there can be more than one path between two nodes.

We can write a graph G, a collection of Edges (E) and Vertices (V) as G = (V, E)

 V (G) = {A, B, C, D, E, F}
 E(G) = { (C,A), (A,B), (B,E), (B,D), (C,E), (C,A), (E,A)}

Each edge is specified by two nodes it interconnects. Two nodes are called adjacent nodes if they are
connected by an edge. In fig 13.1 vertices A and C are adjacent. Also note that edges can be directed or
bidirectional. We have shown directed edges in Fig. 13.1. A directed graph is also known as digraph.

^

b

_

` a

c

Fig. 13.1 A Graph with 5 vertices 7 edges.

A graph can have an isolated node, node F. Similarly, we have shown a loop at vertex B. A graph can
have more than one edge between vertices. Then we call such graphs as multiple graphs. For example
between C and D, there are 3 directed edges shown.

GRAPHS

CHAPTER

C & Data Structures by Practice346

Degree of a node is number of edges incident on a node. Degree of node E = 3. Further in degree is
number of incoming edges and out degree is number of edges leaving a node. For example in degree of
node E is 3 and out degree of node E is 1.

A weighted graph is a graph whose edges have weights. These weights can be thought as cost involved
in traversing the path along the edge. Fig. 13.2 shows a weighted graph.

^

NM

_

`

a

b

NR

R

S

O

Fig. 13.2 A weighted graph

Adjacent Vertex A vertex V2 is said to be adjacent to vertex V1 if there is an edge connecting these two
vertices. In Fig. 13.2 B&C, D&E are adjacent vertices.

A path through a graph is a traversal of consecutive vertices along a sequence of edges The vertices
that begin and end the path are termed the initial vertex and terminal vertex, respectively. The length
of the path is the number of edges that are traversed along the path. A-B-C-D is path.

Directed Graph(digraph) It is a graph in which edges are directed.

Connected Graph is one in which every vertex is connected to another vertex. Further a digraph is
called strongly connected if there is a path from any vertex to any other vertex.

Connectedness
 An undirected graph is considered to be connected if a path exists between all pairs of vertices thus
making each of the vertices in a pair reachable from the other. An unconnected graph may be subdivided
into what are termed connected subgraphs or connected components of the graph.

347Graphs

 The connectedness of a simple directed graph becomes more complex because direction must be
considered. For instance, if vertex a is reachable from vertex b, vertex a may not be reachable from
vertex b. For the road map example when the map is considered to be a directed graph, it can not be
considered a connected graph, because while Calgary is reachable from Saskatoon, Saskatoon is not
reachable from Calgary.
Cycle: A graph is said to be cyclic if starting vertex and ending vertex in a path of the graph is the same.
B-C-E-B is a cycle. A cycle is a path in which the initial vertex of the path is also the terminal vertex of
the path. When a simple directed graph does not contain any cycles is termed acyclic.

Directed graph cycle

Cycle for undirected Graph :A simple cycle for an undirected graph must contain at least three
different edges and no repeated vertices, with the exception of the initial and terminal vertex.

Directed graph cycle

Simple directed graphs can be classified as weakly connected and strongly connected. A weakly
connected graph is where the direction of the graph is ignored and the connectedness is defined as if
the graph was undirected. For example in the figure shown below we can not reach a from c.

~

Ä

Ç

Å

Weakly connected directed graph

C & Data Structures by Practice348

A strongly connected graph is one in which for all pairs of vertices, both vertices are reachable from
the other. A strongly connected graph is a directed graph that has a path from each vertex to every other
vertex. In other words formally a strongly connected graph can be defined as a directed graph D=(V, E)
such that for all pairs of vertices u, v “ V, there is a path from u to v and from v to u.

~

Ä

Ç

Å

Strongly connected directed graph

Tree vs. Graph: A graph can be called a tree, if it is connected and there are no cycles.

 13.2 GRAPH REPRESENTATION
A graph is a mathematical structure and it is required to be represented as a suitable data structure so that
very many applications can be solved using digital computer. These data structures are adjacency Matrix
Representation and Adjacency List Representations. We will consider graph at Fig. 13.3 to illustrate these
two representations.

^

_
a

`

b

c

Fig. 13.3 A graph with 6 vertices and 8 edges

13.2.1 Adjacency Matrix Representation: A graph with N nodes can be represented as N x N Adjacency
Matrix A such that an element Ai j

Ai j = 1 if there is an edge between nodes I and J
 = 0 Otherwise

Note that number of 1 s in a row represents the out degree of node. Out degree of A is 2. In case of
undirected graph number of 1 s represent the degree of the node.
Total number of 1 s in the matrix represents number of edges.

349Graphs

An interesting mathematical property is that an element of matrix Am represents number of paths of
length m between vertices Vi and Vj. Let us consider a 5X5 graph at Fig. 13.4

A B C D E F
A 0 1 0 1 0 0
B 0 0 0 1 0 0
C 1 0 0 1 1 0
D 0 0 1 0 0 0
E 0 0 0 0 0 0
F 0 0 1 0 0 0

^
_

b

a

`

 0 1 0 0 0
 0 0 0 0 1
A= 1 1 0 0 0
 1 1 1 0 0
 0 0 0 1 0

 0 0 0 0 1
 0 0 0 1 0
A2 = 0 1 0 0 1
 1 2 0 0 1
 1 1 1 0 0

 0 0 0 1 0
 1 1 1 0 0
 A3 = 0 0 0 1 1
 0 1 0 1 2
 1 2 0 0 1

Note from A2 that there are 10 paths of length 2 i.e.
First row : A to E
Second row : B to D
Third row : C to B , C to E
Fourth row : D to A , D to B (two paths) , D to E
Fifth row : E to A, E to B , E to C
Note from A3 that there are 14 paths of length 3 i.e.
First row : A to D
Second row : B to A , B to B, B to C
Third row : C to D , C to E
Fourth row : D to B , D to D, D to E (two paths)

Fifth row : E to A, E to B (two paths), E to E

C & Data Structures by Practice350

13.2.2 Adjacency List Representation

In Linked List representation, we store graph a linked List. Firstly, we have the full list of vertices,
say A,B,C,D,E, and F. Then for each vertex, we would have linked list of its adjacent vertices. Consider
the graph at Fig. 13.4

Adjacency List. Here we keep all the adjacency list for each node

Node Adjacency List

A B

B E

C A B

D A B C

E D

Fig. 13.5 Adjacency list for graph at Fig. 11.4

^ _ b a `

_ b a ` ^

` ^ _ b a

a ` ^ _ b

b a ` ^ _

Fig. 13.6 Single linked list representation

351Graphs

^ u

u

u

uu

u

_

`

EaF

b

EaF

E_F E` F

E^F

E^FE_FE_F

bÇÖÉ=äáë í
åçÇÉ=äáë í

E^F

EbF

Fig. 13.7 Double linked list representation of a graph

Node Next Adjacent
In a graph pointer points to first node

To next in the adjacency List
Node in the
Node List

Fig. 13.8a A node list - fields

Pointer to Pointer to Next
Terminal node of the node in the adj. List
Edge in the graph

Fig. 13.8b Edge list - fields

C & Data Structures by Practice352

 13.3 GRAPH TRAVERSALS
Traversal means visiting each node in a graph. There are two traversals which are of interest to us.
They are

a) Depth First search (DFS)
b) Breadth First Search (BFS)

Unlike trees, graphs do not have any root node; hence any node can be construed as start node. We
will explain the algorithm through an example. Consider the graph shown in Fig. 13.9. Adjacency
matrix representation is shown at Fig. 13.10

Ü

Å

ÖÖ

~

Ä

É
Ç

Fig. 13.9 Graph for DFS and BFS algorithms

In graph traversal algorithms, we will mark the entire node as un visited to start with. In these
search algorithms, we would store all adjacent nodes that have not been visited so far, to node we have
just visited in a suitable data structure and chose node to visit next from data structure used. Stack data
structure is suitable to achieve depth first search as it’s a last in first out structure. Queue data structure is
suitable for breadth first search as it is a first in first out data structure, indicative of sequence of arrival.
(Level by level visit)

Also note that we have to keep track of node which have been visited. In either case, we will
continue the process; till all the nodes are visited i.e. stack or queue is empty. Following example will
make your ideas clear.

0 1 2 3 4 5 6 7
a b c d e f g h

0a 0 1 1 0 0 0 0 0
1b 1 0 0 1 1 1 0 0
2c 1 0 0 0 0 1 1 1
3d 0 0 0 1 0 0 0 0
4e 0 0 1 0 0 0 0 0
5f 0 1 1 0 0 0 0 0
6g 0 0 1 0 0 0 0 0
7h 0 0 1 0 0 0 0 0

Fig. 13.10 Adjacency matrix representation

353Graphs

13.3.1 DFS Algorithm

Step 1: Initialization
a) Initialize Stack to empty
b) Mark all nodes as not visited
c) Push node 0 onto the stack and mark it as visited

Step 2: While (stack is not empty)
{

a) Pop value from stack
b) Push all nodes adjacent to popped node and which have not been visited as

yet onto the stack
c) Mark all pushed nodes as visited

}

Depth First Search Algorithm-implementation

Step 1: Initialization

* Mark all nodes as not visited

Push ‘a’ onto the stack

~

DFS Array

and ‘a’ is visited

Empty

Tos

Step 2:
- Pop (Stack)
- Store in Array

- Push elements adjacent Å

to a onto the stack
- Mark ‘b’ and ‘c’ as visited

Ä

~
Tos

C & Data Structures by Practice354

Step 3:
- Pop (Stack)
- Store in Array

- Push elements adjacent ~ Å

to c and which have not been visited on to the stack
- Mark f, g, h as visited
-

Ä

Ñ

Ö

Ü Tos

Step 4:
- Pop Stack
- Store in Array

~ Å Ü- Store elements adjacent to ‘h’
which have not been visited on to the stack

Ä

Ñ

Ö

Note: No new elements are added to the
stack as b and c which are adjacent to h
have already been visited

Tos

Step 5:
- Pop Stack
- Store in Array
- Store elements adjacent to ‘g’ in stack

Ä

Ñ

No new elements

~ Å Ü Ü

 Tos

355Graphs

Step 6:
- Pop Stack
- Store popped value in array
- Store elements adjacent to ‘f’ in stack

Ä Tos ~ Å Ü Ö Ñ

Step 7:
- Pop Stack
- Store elements in ‘b’ array
- Push elements adjacent to ‘b’ onto the stack

Ç

É
Tos ~ Å Ü Ö Ñ Ä

Step 8:
- Pop Stack

-Store elements in array
- Push elements adjacent to ‘e’ onto the stack

Ç
Tos ~ Å Ü Ö Ñ Ä É

Step 9:
- Pop Stack
- Store elements in array
- Push elements adjacent to ‘d’ onto the stack

~ Å Ü Ö Ñ Ä É Ç

 (Stack is empty)

C & Data Structures by Practice356

DFS Traversal is : a c h g f b e d

Program to demonstrate Depth first search in graphs

Example 13.1

//dfs.c Program to demonstrate Depth first search in graphs

#include<stdio.h>
#include<stdlib.h>
int adj[8][8]={ {0,1,1,0,0,0,0,0},

{1,0,0,1,1,1,0,0},
{1,0,0,0,0,1,1,1},
{0,0,0,1,0,0,0,0},
{0,0,1,0,0,0,0,0},
{0,1,1,0,0,0,0,0},
{0,0,1,0,0,0,0,0},
{0,0,1,0,0,0,0,0}

 }; //adjacency matrix
int visited[30];//visited matrix
struct stack
{ int s[30];

int sp;
};

 typedef struct stack stk;
 stk st;
 void push(int val);
 int pop();
 int isEmpty();
 void disp();
 void main()
 { //initialize stack pointer

 st.sp=-1;
 int i,j,val;
 int DFS[30];

 //display adjacency matrix
 for(i=0;i<8;i++)

 { printf(“\n”);
 for(j=0;j<8;j++)

 printf(“%d\t”,adj[i][j]);
}

 i=0;//reinitialize i

357Graphs

 push(i);//push first element onto the stack
 visited[i]=1;

 disp();

 while(isEmpty()==0)
 { val=pop();

 DFS[i]=val;
 //now read the adjacency martrix and push

 //nodes onto stack which have not been visited
 for(j=0;j<8;j++)
 { if(adj[val][j]==1)

 { if(visited[j]==0)
 { push(j);
 visited[j]=1;
 }

 }
 }//end of for

 //disp();
 i=i+1;

 }// end of while
 printf(“\nDFS for the graph\n”);
 for(i=0;i<8;i++)

printf(“%d\t”,DFS[i]);
 }// end of main

 int isEmpty()
 { if(st.sp==-1) //if top is equals to null

{ //printf(“Stack is Empty”);
return 1;

}
 else
 return 0;
}// end of isEmpty()

void push(int val)
{ st.sp++;//increment sp to next position
 st.s[st.sp]=val;//assigning val to st[sp]
} // end of int push ().

int pop()
{ int val, ans ; // ans hold the return value fro isEMpty(). 1 if it is
 // empty. Else it hold 0.

C & Data Structures by Practice358

 ans = isEmpty();
 if (ans == 0) // The stack is not empty
 { val=st.s[st.sp];

 st.sp—; //decrement stack[sp]
 }
 else
 printf(“\n Stack is Empty no items to pop”);
 return(val);
}// end of int pop

 void disp()//display function
 { int i ;

 printf(“\n”);
 if (isEmpty()== 0)
 { printf(“\n ****elements of stack****”);

 for(i=st.sp;i>=0;i—) //display stack items
 printf(“\n %d\t”,st.s[i]);

 }
 else
 printf(“\n stack is Empty.”);
 }//end disp()
 /*

Enter no of nodes in the graph:8

0 1 1 0 0 0 0 0
1 0 0 1 1 1 0 0
1 0 0 0 0 1 1 1
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0

DFS for the graph
0 2 7 6 5 1 4 3 */

13.3.2 BFS Algorithm
Step 1: Initialization

a) Initialize Queue to empty
d) Mark all nodes as not visited
e) Enque node 0 and mark it as visited

359Graphs

Step 2: While (queue is not empty)
{ Deque element from stack

d) Enque nodes adjacent to deque node and which have not been visited as yet onto
the stack

e) Mark all enqued nodes as visited
}

Breadth First Search Algorithm

Step 1: Initialization
Mark all nodes as not visited
Enque ‘a’ mark it as visited

a

BES Array

Queue
Front Rear

Step 2:
- Deque (Queue)
- Store in Array
- Enque nodes adjacent ~

to ‘a’ into the queue
- Mark ‘b’ and ‘c’ as visited

Å

Ä

 Rear

 Front

Step 3:
- Deque (Queue)

- Store in Array

C & Data Structures by Practice360

- Enque nodes adjacent
~ Å

to ‘b’ into the stack

- Mark d,e,h as visited

Å

Ç

É

Ü Rear

 Front

Step 4:
- Deque (queue)
- Store in Array

~ Ä Å

- Enque nodes adjacent to ‘c’
into the queue

- Mark ‘f’ and ‘g’ as visited

Ç

É

Ü

Ñ

ÖRear
Note that ‘h’ is not enqued as it was
Marked as visited

Front

361Graphs

Step 5:
- Deque (queue)

 Rear ~ Ä Å Ç

 Front

Step 6:
- Deque (queue)

Ü

Ñ

Ö
Rear

Front

Step 7:
- Deque (queue)

Ñ

Ö Rear ~ Ä Å Ç É ÖÑ

 Front

Example 13.2 bfs.c
//Program to demonstrate Breadth first search in graphs

#include<stdio.h>
#include<stdlib.h>

int adj[30][30]; //adjacency matrix
int visited[30];//visited matrix

É

Ü

Ñ

Ö

~ Ä Å Ç É

continuing, we get BFS
traversal as

C & Data Structures by Practice362

 struct queue

 {
 int data[30];

 int front,rear;
 } ;
 typedef struct queue que;
 que q;

 void enqueue(int val);
 int dequeue();
 int isEmpty();
 void disp();

 void main()
 {

 //initialize queue
 q.rear=-1;
 q.front=0;
 int nodes;
 int i,j,val;
 int BFS[30]; //array to store the nodes

 printf(“\nEnter no of nodes in the graph:”);
scanf(“%d”,&nodes);

 //read the adjacency matrix
 for(i=0;i<nodes;i++)

 {
 for(j=0;j<nodes;j++)
 {

 printf(“\n Enter edege[%d][%d]:”,i,j);
 scanf(“%d”,&adj[i][j]);

 }
 }

 //display adjacency matrix
 for(i=0;i<nodes;i++)

 {
printf(“\n”);

 for(j=0;j<nodes;j++)
 printf(“%d\t”,adj[i][j]);

}

363Graphs

 i=0;//reinitialize i
 enqueue(i);//push first element onto the queue

 visited[i]=1;
 disp();

 while(isEmpty()==0)
 {

 val=dequeue();
 BFS[i]=val;

//now read the adjacency martrix and push nodes onto stack which have not been visited
 for(j=0;j<nodes;j++)
 {

 if(adj[val][j]==1)
 {

 if(visited[j]==0)
 {

 enqueue(j);
 visited[j]=1;

 }

 }
 }//end of for

 disp();
 i=i+1;

 }

 printf(“\nBFS for the graph\n”);
 for(i=0;i<nodes;i++)

printf(“%d\t”,BFS[i]);
 }

 void enqueue(int val)

 { q.rear++;//increment rear to point to next empty slot
 q.data[q.rear]=val;
 }
int dequeue()
{ int k,ans;
 k=isEmpty();

if(k==0)//queue is not empty
{ ans=q.data[q.front];
 q.front++;
}

 else

C & Data Structures by Practice364

 { printf(“Queue is empty\n”);
 ans=-1;
 }
 return(ans);
}

int isEmpty()
{ int ans;
 if(q.rear<q.front)
 ans=1;

 else
 ans=0;

 return(ans);
}
void disp()
{ int ans,i;
 printf(“****data elements in queue****\n”);
 ans=isEmpty();
 if(ans ==0)

 { for(i=q.front;i<=q.rear;i++)
 printf(“%d\n”,q.data[i]);

 }
 else

 printf(“queue is empty\n”);
 }

 13.4 MINIMAL SPANNING TREES(MST)
Dictionary meaning of spanning is to extend across from the present state. Minimal spanning tree
means get connected to all other nodes so that cost of such connection is minimal. It means Minimal
spanning tree is a fully connected graph. Solution of minimal spanning tree is very attractive for
network designers, say for example a cable laying company with head quarters at Hyderabad and get
connected to all district head quarters. How do they plan laying the cables and connect all district head
quarters, keeping the total cost minimum. Therefore the constraints are:

• The set of edges to be included should be a minimal set.
• No cycle in MST

13.4.1 MST Problem

Kruskals algorithm builds a minimum spanning tree by adding at each step the smallest weighted edge
that hasn’t already been added, provided it does not create a cycle. The algorithm stops when all edges
are connected (it is a spanning tree).
An algorithm that makes an optimal choice at each stage is called a greedy algorithm.

365Graphs

13.4.2 Example Spanning Tree Problem:

N

_

S

`

P

b^

O

a

R

Q T

0 1 2 3 4
a b c d e

0a 0 1 0 5 4
1b 1 0 6 0 3
2c 0 6 0 2 7
3d 5 0 2 0 0
4e 4 3 7 0 0

Fig. 13.11 Graph for minimal spanning tree & adjacency matrix

Following Kruskal’s algorithm:
1. The smallest weight edge is of weight 1. Adding this doesn’t create a cycle, so we add it

N

A

B

E C

D
2. The next smallest weighted edge weight is of weight 2. Adding this doesn’t create a cycle, so

we add it.

N

O

A

B

E
C

D

C & Data Structures by Practice366

3. The next smallest weighted edge is of weight 3. Adding this doesn’t create a cycle, so we add it.

N
P

A

B

E C

D
4. The next smallest edge is of weight 4. However, adding this would create a cycle (see below), so

we don’t add it.

N

P
`óÅ äÉ

Q

O

A

B

E
C

D
5. The next smallest edge is of weight 5. Adding this doesn’t create a cycle, so we add it.

N

P

O
R

A

B

E C

D

1. The above is MST using Kruskal’s algorithm.
2. The edges selected are (A,B) (D,C) , (B,E) ,(A,D)
3. Cost of MST = 1+2+3+5=11 Units

13.4.3 Kruskals Algorithm for MST
 Let G = { V, E} be a graph

MST = { } // MST is the set of all edges that make up minimal spanning tree
While (MST has < n-1 edges) &&(E is not empty)
 {

 select (u,v) fron E Duch that its weight is minimal
 delete (u, v) from E
 if adding (u,,v) does not create a cycle, add it to MST
 }

367Graphs

Example 13.3 gkruskal.c

 The graph we would consider for demonstrate the working of kruskal algorithm is shown below. The
corresponding Adjacency matrix is also appended

M N

Q

OP

P

O

Q

NM

NR

R

P

NR

Fig. 13.12 Graph for solving Kruskals algorithm

adj[max][max]={ {HIGH,10,HIGH,3,15},
 {10,HIGH,3,HIGH,4},
 {HIGH,3,HIGH,15,2},
 {3,HIGH,15,HIGH,5},
 {15,4,2,5,HIGH}
 } ; //adjacency matrix

Note: adj[0][1]=10 and also adj[1][0]=10 so when we delete a edge we have to delete both adj[I][j] and
adj[j][I]

// gkruskal.c. A program to demonstrate kruskals algorithm
#include<stdio.h>
#define max 5
#define HIGH 65535

int adj[max][max]={
{HIGH,10,HIGH,3,15},
{10,HIGH,3,HIGH,4},
{HIGH,3,HIGH,15,2},
{3,HIGH,15,HIGH,5},
{15,4,2,5,HIGH}
}; //adjacency matrix

void findminedge(int a[]); //finds the the edge with minimum cost
void delminedge(int a[]); //deletes the edge with minimum cost from graph

C & Data Structures by Practice368

int iscycle(int a[],int mst[][2],int edge);//checks if addition of edge to MST produces a cycle
 //returns 1 if yes else 0
void main()
{ int i=0,cycle,edge=0;
 int a[2]={0,0};//array to store the current minimum edge
 int mst[max-1][2];//array to store the mst

while(edge<max-1)
{ findminedge(a);

 printf(“min edge i=%d,j=%d\n”,a[0],a[1]);
 delminedge(a);
 cycle=iscycle(a,mst,edge);
 if(cycle==0)

 {mst[i][0]=a[0];
 mst[i][1]=a[1];
 edge++;
 printf(“mst=%d %d \n”,mst[i][0],mst[i][1]);
 i++;
 }
 }//end of while

 printf(“edges included in MST........\n”);
for(i=0;i<edge;i++)

 printf(“%d %d\n”,mst[i][0],mst[i][1]);
}
void findminedge(int a[])
{ int i,j;
 int min=HIGH;
 for(i=0;i<max;i++)
 {
 for(j=0;j<max;j++)

{
 if(adj[i][j]<min)
 {min=adj[i][j];
 a[0]=i;
 a[1]=j;
 }//end of if
}//end of for:j loop

 }//end of for:i loop
}//end of findminedge()

void delminedge(int a[])
{
 int i,j;
 i=a[0];

369Graphs

 j=a[1];
 adj[i][j]=HIGH;
 adj[j][i]=HIGH;
}//end of delminedge function

/*cycle checking
suppose edges1: 2 4 and edges2: 1 2 are already present in the MST,now suppose the new min is
minedge: 1 4 to check if the current edge will form a cycle we will have to first check if i of newmin(1
in this case) and j of newmin(4 in this case), are already present in some i and j of the MST(in this case
1 is present in i of edge of 2 and 4 is present in j of edge1),once we have established that both are present
we have to check if the second vertex of i and the first vertex of j are equal, if they are equal we can
conclude that addition of this edge forms a cycle and hence should not be included in the MST(you can
see that 2 is common to both edges1 and 2).*/

int iscycle(int a[],int mst[][2],int edge)
{ int i=0,j=0;
 int flag1=0,flag2=0;

 //the two for loops below find out if i and j of current min are already present in the MST
 //if yes it sets the flags to 1
 for(i=0;i<edge;i++)

{ if(mst[i][0]==a[0])
{ flag1=1;
 break;
}//end of if

}//end of for
 for(j=0;j<edge;j++)
 { if(mst[j][1]==a[1])

{ flag2=1;
 break;
}//end of if

 }//end of for
 if(flag1==1 && flag2==1 && mst[i][1]==mst[j][0])
 { printf(“cycle formed:not included in mst\n”);

 return(1);
 }//end of if
 else
 return(0);
}//end of iscycle()
/*Output:
min edge i=2,j=4
mst=2 4
min edge i=0,j=3

C & Data Structures by Practice370

mst=0 3
min edge i=1,j=2
mst=1 2
min edge i=1,j=4
cycle formed:not included in mst
min edge i=3,j=4
mst=3 4
edges included in MST........
2 4
0 3
1 2
3 4 */

13.4.4 Prims Algorithm for MST
Kruskal’s algorithm has two main drawbacks. A second algorithm is required to sort the edges in ascending
order of weight before we can select to be part of MST It is further necessary to check at each stage that
a cycle isn’t formed.
Prims algorithm solves these problems. It works by always choosing the closest unconnected vertex,
from any connected vertex (not just the last connected vertex).
For the example network:

P
S

`

_

N

^ P

Q T

a

O
R

1. Choose a starting vertex. We’ll choose A. Now add the closest , i.e. least cost from the vertex
A. This is B, so B is added.

_

^ b `

a

N

2. Now connect the vertex that is closest to any of the connected vertices (A and B). B connects to

371Graphs

E with a weight of only 3, so this is added

`

P
N

a

b

_

^

3. The closest to A,B or E is the connection from A to D, with weighting 5, so this is added.

_

N

^

R

b

P
`

a

4. The closest connection to the only remaining vertex,C, is from D to C, so this is added.

`b

P

_

^

R

a

O

Prims Algorithm for MST

 Let G = { V, E} be a graph
MST = { } // MST is the set of all edges that make up minimal spanning tree

 Select the starting node
 While (MST has < n-1 edges) &&(E is not empty)

 {

C & Data Structures by Practice372

select a node,v from adjacent nodes to the node selected such that its weight is minimal. if adding
edge denoted by (u,,v) does not create a cycle, add it to MST delete edge (u, v) from E select the node
closest to any of the previously selected nodes such that its weight is minimal.
 }

 We leave the coding as an exercise.

OBJECTIVE QUESTIONS

1. A directed graph is called digraph True/False
2. A degree of node is number of edges —————— on it.
3. A tree is a graph with cycle True/False
4. A graph can be represented as

 ———————————————————
 ———————————————————

5. Graph has a root node. True/False
6. For Depth First Traversal, suitable data structure is

a) Queue b) Stack
c) Circular queue d) Linked List

7. For Bredth First Traversal, suitable data structure is
a) Queue b) Stack
c) Circular queue d) Linked List

8. In Minimal Spanning Tree edges are shortest paths. True/False
9. In MST which is NOT True.

a) MST has no cycle
b) Set of edges are minimal
c) Total cost is minimum.
d) none of the above

10. Kruskals algorithm can be classified as Greedy algorithm True/False

REVIEW QUESTIONS

1. Write in detail about the following;
a. Weekly connected graphs
b. Strongly connected graphs

2. A digraph is strongly connected if it contains a directed path from j to I for every pair of distinct
vertices I and j. Show that for every n, n>=2,there exists a strongly connected digraph that
contains exactly n edges

373Graphs

Show that every n vertex strongly connected digraph contains at least n edges where n>=2
3. Explain about the following graph traversal methods with suitable

a) Depth first search
b) Breadth first search

4. Define a graph. Explain the properties of a graphs

Solutions to Objective Questions
1. True 2) Incident 3) False
4) Adjacency matrix representation & adjacency list representation
5) False 6) b 7) a 8) False 9) d 10) True

This page
intentionally left

blank

14
 14.1 INTRODUCTION

We are interested in evaluating a program or algorithm and compare the performance analysis of the
programs. Generally, two of the most important factors we would like to consider are speed of execution
and storage requirements. Time is not actual time taken by the algorithm, not time units but it measures
change in time consumed by the algorithm for change in input i.e.. increase in input. An algorithm has
some key operations that would decide the time consumption, for example, in case of sorting algorithms,
we would like to compare two records using some key. Number of key comparisons is one of the
criteria for comparison of sorting algorithms.

We can carry out analysis of a program and decide the best case and worst case performance and arrive
at a formula for program execution. Suppose that n is the input size, and as per analysis carried out
average time (or number of critical operations) is given by formula

 f(n) = 0.05* n2 +* n ………………………………………..14.1

The variation of a, b, and f(n) with varying input size is shown in Table 14.1 and Fig. 14.1. Observe
that for n >= 100, the value of a increases much faster than value of b.

Table 14.1 Variation of a , b , and f(n) with input size - n

n a=.05n*n b=5n f(n) =a+b
10 5 50 55
60 180 300 480
80 320 400 720

100 500 500 1000
200 2000 1000 3000
300 4500 1500 6000
400 8000 2000 10000
500 12500 2500 15000

SEARCHING AND SORTING

CHAPTER

C & Data Structures by Practice376

¥=î~êá~íáçå =ç Ñ=óEåF=Z=MKR =G=å
O

¥=î~êá~íáçå =ç Ñ=ÑEå F=Z =M KR=G=å H =RGå
O=

áåéì í=Ç~ í~=ëáòÉ =J=å

¥ =î~êá~íáçå =ç Ñ=ñEåF=Z=R=G=å
VMMM

UMMM

TMMM

SMMM

RMMM

QMMM

PMMM

OMMM

NMMM

RM NMM NRM OMM ORM PMM PRM QMM

NMMMM

q
áã

É
=r
å
áí
ë

Fig. 14.1 Variation of a , b , and f(n) with input size - n

 14.2 BIG OH-O NOTATION
To describe the behavior of f(n) as n varies, we can use Big O notation, where in we would say f(n)
is on the order of y(n) and write

 f(n) = O (y(n)) if there exists two numbers a and b such that
 f(n) <= a*y(n) for all n>=b

 For example if f(n) = 0.05 n2 + 5 n, We have
5* n <= 0.05*n^2 for n>=100 ……………………….……14.3

 add 0.05*n^2 on both sides to get
0.05*n^2 + 5* n <= 2 (0.05*n^2) ……………………..…14.4

 LHS is nothing but f(n), hence we have
f(n) <= 2 (y(n)) for n >= 100 where y(n) = 0.05*n^2 …..14.5

We can say that f(n) is bounded by y(n) from above i.e. f(n) is permanently smaller than y(n) for values
of a = 2 and b = 100. Hence we can say that complexity is algorithm is of the order O(y(n)) i.e.
O(0.05*n^2) = O(n^2)

 A few important properties

a) Transitive Property : If f(n) O(y(n)) and y(n) = O (z(n)) then f(n) = O(z(n)

377Searching and Sorting

 b) if f(n) = k (constant k for all n) then f(n) = O (1)
c) Logarithmic Property. For an input size is n, let f(n) = log m n and
y(n) = log k n. We can then write log m n = log k n * log m k. Observe that log m k is a constant
as both m and k are constants. i.e.

 log m n = C * log k n...14.2

From above, we can observe that base of any order can be expressed as base of any other
order and hence for complexity considerations, it can be ignored. Hence when dealing with
logarithmic functions base can be ignored and simply we can say that
 f(n) = O (log n)...14.3

 14.3 EFFICIENCY CONSIDERATIONS IN SORTING ALGORITHMS
If the algorithm is independent of problem size then O(1), this is the best situation that one can be in.

If the algorithm is dependent on input size n i.e. if the input size doubles, then if time consumed by
algorithm also doubles, we can say complexity is O(n).

If the input size doubles and algorithm takes just one more step, then we can say that O(log n). If
the input size is 8. Log 2 8 = x, where x is the number of steps an algorithm takes, we have x = 3. Now
if input size doubles to 16 Log 2 16 = x , then x = 4 i.e. x increases only by 1.

If the input size doubles and algorithm takes more than twice that of n, the complexity is of the
order of O(n log n)

Lastly, the worst case is when the algorithm takes n^2 steps for an input of n, we would say that
complexity is O(n2).

 14.4 SEARCHING
Searching is an important and most frequently performed in computer operations. The program usually
searches for a record with an identification number. For example, if you are a bank manager you would
search for a particular transaction involving a customer. Similarly, if you are a students you may search
for your record containing marks. Note that, in real life files are usually very large files, for example
Municipal corporation may hold millions of records. To search your record out of say ten million
records must be fast. Here comes the need for an efficient algorithm.

There are several types of searches like linear search, binary Search, and hash search etc.
However we would be concentrating on linear and binary search. usally we carryout search using a
key. This key is an identifier for the record holding data. Examples of key are, customer id, student roll
number etc. The output from a search algorithm is normally the position of the record or the contents
of the record.

C & Data Structures by Practice378

 14.4.1 Linear Search
This is most frequently used search method. We simply traverse the list or array or records and

check if the identification number matches with the id number of our interest.

Algorithm:

Begin:
Found = false

 Count = 0
 Obtain the input array.

 Obtain number of terms, key
 Do

 { If array[count]== key
 Found = true.
 Else

 Count ++
 } while (count <=N) && found==false)
 if false declare the key is not present in the array
 Else declare the position and value of the element
 End

We have done several of linear searches in the areas we have covered. for example all our array
traversal are linear searches.

14.4.2 Analysis of Linear Search
The critical parameter of linear search is how many comparisons. we have to carry out to get the

result. How many times we have to execute the do … while loop in our algorithm. Obviously the larger
the data set, the larger will be time of execution. It also depends on the position of the record in the file.

For example if there are 10000 records and record of our interest is at 9999 the we have to traverse
9998 records to access 9999 record. Similary if we are lucky and our record is at position 2, then only
one access and check would suffice. Therefore average number of comparisons C is given by

C = 1+2 +3 +4+ …………+N /N
C = (N * (N + 1)) /2*N
C = (N+1)/2

Sequential search os efficient for small number of records but very inefficient for large set of records.
In the worst case, the sequential search has complexity of O(N) as N comparisons would be required.

379Searching and Sorting

14.4.1 Example 14.1. linsrch.c A program to perform linear search
Program:
//program to demonstrate linear serach
#include<stdio.h>
#include<stdlib.h>

int linsearch(int sort[],int val,int len);
void main()
{int len,i=0,val,key;
 int sort[30];
 printf(“\n enter no<0 to stop>”);
 scanf(“%d”,&sort[i]);
 while(sort[i]!=0)

{i++;
 printf(“\n enter no<0 to stop>”);

 scanf(“%d”,&sort[i]);
}

 len=i; //length is taken as i and not as i+1 as 0 is also stored in the array
 printf(“\n **** Array **** \n”);

for(i=0;i<len;i++)
 printf(“%d\t”,sort[i]);

 printf(“\n\nEnter value to be searched:”);
 scanf(“%d”,&val);
key=linsearch(sort,val,len); //call the function binsearch which will serach the element

 if(key==-1)
 printf(“\n Value not present in the array”);
 else
 printf(“\n Value %d Found at location %d in the array\n”,val,key);

}
int linsearch(int sort[],int val,int len)
{int i;
 for(i=0;i<len;i++)

{if(sort[i]==val)
 return(i);
}

 return(-1);
}
/*Output:
enter no<0 to stop>56
enter no<0 to stop>45
enter no<0 to stop>12
enter no<0 to stop>36
enter no<0 to stop>76

C & Data Structures by Practice380

enter no<0 to stop>0
**** Array ****
56 45 12 36 76
Enter value to be searched:36
Value 36 Found at location 3 in the array*/

 14.5 BINARY SEARCH
While linear search is easy to implement for large data sets it is highly inefficient. Binary search on the
other hand is very efficient and complexity is of the order of O(logN) only. In this method, in each
iterartion we would partition the array exactly in to two halfs. Check out if the number required is
exactly in the middle or to the left or to the right of the Middle number, shown in Fig. 14.2a Accordingly
consider only left or right sub array.

ã áå äÉ Ñí

j áåZM ã~ñ=Z =å JN Z=ã áå=H=ã~ñLO

ã áÇ êáÖÜ í ã~ñ

Fig. 14.2a Binary search technique. Original array

ã áå KKKKK ã áÇ KKKKK ã ~ñ

14.2b. Left of the array : Key is less than the mid value

For example if the original array contained 32 elements i.e. 25. If the input size is 32. Log 2 32 = x, where
x is the number of steps an algorithm takes, we have x = 5 Now if the input size is doubled to 64,
Log 2 64 = x, where x is the number of steps an algorithm takes, we have x = 6. We can observe that as
the input size is doubled the algorithm has taken only one step extra from 5 to 6. Hence we can conclude
that binary search algorithm has complexity of the order of O(logN).

14.5.1 Binary Search Algorithm

begin :
max=length-1
min=0;
success=false

 while ((!success) && max>=min)
{
 mid=max+min/2

381Searching and Sorting

 if (mid==key)
declare the result. Mid is the position. success=true;

 else
 if key < array[mid]
 // adjust max to left sub array
 Max = Mid-1
 Else

Min=min+1
end

Here comes the program on binary search

Example 14.2 binsrch.c A program to search an array on binary search using recusrion.
//program to demonstrate binary serach using recurssion
#include<stdio.h>
#include<stdlib.h>

int binsearch(int array[],int val,int lo,int hi);
void main()
{int len,i=0,val,key;
 int array[30];
 printf(“Enter sorted input\n”);

printf(“\n enter no<0 to stop>”);
 scanf(“%d”,&array[i]);
while(array[i]!=0)
{i++;

 printf(“\n enter no<0 to stop>”);
 scanf(“%d”,&array[i]);
}
len=i; //length is taken as i and not as i+1 as 0 is also stored in the array

 printf(“\n **** Array **** \n”);
 for(i=0;i<len;i++)

 printf(“%d\t”,array[i]);
printf(“\n\nEnter value to be searched:”);
 scanf(“%d”,&val);
 key=binsearch(sort,val,0,len-1); //call the function binsearch which will serach the element

 if(key==-1)
 printf(“\n Value not present in the array”);
 else

printf(“\n Value %d Found at location %d in the array\n”,val,key);
}
int binsearch(int array[],int val,int lo,int hi)
{ int mid,key;
 if(lo>hi)

C & Data Structures by Practice382

 key=-1;
 else

 { mid=(lo+hi)/2;
 if(val==array[mid])

 key=mid;
 else

 if(val< array[mid])
 {hi=mid-1;

key=binsearch(sort,val,lo,hi);
 }

 else
 if(val>array[mid])
 { lo= mid+1;
 key=binsearch(sort,val,lo,hi);
 }

 }
 return(key);
}
/*Output:
Enter sorted input
enter no<0 to stop>56
enter no<0 to stop>67
enter no<0 to stop>78
enter no<0 to stop>100
enter no<0 to stop>120
enter no<0 to stop>0
**** Array ****
56 67 78 100 120
Enter value to be searched:78
Value 78 Found at location 2 in the array*/

Example 14.3 binsrchrec.c. A program to demonstrate binary search using iteration
#include<stdio.h>
#include<stdlib.h>
int binsearch(int array[],int val,int lo,int hi);
void main()
{int len,i=0,val,key;
 int array[30];
 printf(“enter sorted array\n”);
 printf(“\n enter no<0 to stop>”);
 scanf(“%d”,&array[i]);
 while(array[i]!=0)

{i++;

383Searching and Sorting

 printf(“\n enter no<0 to stop>”);
 scanf(“%d”,&array[i]);
}
len=i; //length is taken as i and not as i+1 as 0 is also stored in the array

 printf(“\n **** Array **** \n”);
 for(i=0;i<len;i++)

 printf(“%d\t”,array[i]);
printf(“\n\nEnter value to be searched:”);
 scanf(“%d”,&val);
key=binsearch(array,val,0,len-1); //call the function binsearch which will serach the element

 if(key==-1)
printf(“\n Value not present in the array”);

 else
 printf(“\n Value %d Found at location %d in the array\n”,val,key);

}
int binsearch(int array[],int val,int lo,int hi)
{int mid;
 while(lo<=hi)
 { mid=(lo+hi)/2;

 if(array[mid]==val)
 return(mid);
 else

 if(array[mid]<val)
 lo=mid+1;

 else
 if(array[mid]>val)

 hi=mid-1;
 }
 return(-1);
}
/*Output:
enter sorted array
enter no<0 to stop>34
enter no<0 to stop>45
enter no<0 to stop>56
enter no<0 to stop>67
enter no<0 to stop>78
enter no<0 to stop>89
enter no<0 to stop>0
 **** Array ****
34 45 56 67 78 89
Enter value to be searched:56
Value 56 Found at location 2 in the array*/

C & Data Structures by Practice384

 14.6 BUBBLE SORT
Bubble sort is the simplest of all the sort algorithms. Its name is derived from the fact that in each
iteration the largest element bubbles to the end of the array, thus during the next iteration we need not
consider this element as it has already been sorted.

14.6.1. Example :

Input OO PQ NM RR NQ Array :
Iteration 1 :

Before Comparison After Comparison

OO PQ NM RR NQ

OO

OO

OO

PQ

NM

NM

NM

PQ

PQ

RR

RR

RR

NQ

NQ

NQ

OO PQ NM RR NQ

OO

OO

OO

NM

NM

NM

PQ

PQ

PQ

RR

RR

NQ

NQ

NQ

RR

i~êÖÉëí=É äÉãÉåí
ÄìÄÄäÉë=íç =íÜÉ=ÉåÇ
çÑ=íÜÉ=~êê~ó

Now leave the sorted element 55 and consider the element 10 as sorting

Iteration 2 :
Before Comparison After Comparison

OO

M

M

NM

NM

NM

NM

OO

OO

OO

OO

OO

PQ

PQ

PQ

PQ

PQ

NQ

NQ

NQ

NQ

NQ

NQ

PQ

kÉñí=ä~ êÖÉëí=É äÉãÉåí
ÄìÄÄäÉë=íç =íÜÉ =ÉåÇ

385Searching and Sorting

Iteration 3 : We need not consider 34 any more as it already sorted

Before Comparison After Comparison

NM

NM

NM

NM

OO

OO

OO

NQ

NQ

NQ

NQ

OO

Iteration 4 :

Before Comparison After Comparison

NM NMNQ NQ

Complete Sorted List is

NM NQ OO PQ RR

Note: Length of array n = 5
No. of outer loop iterations = 4 = (n-1)
No. of inner loop iterations = (n-i)

14.6.2 Algorithm
Procedure bubblesort(sort[],len)

for i=1 to len-1 do
begin

for j=0 to len-i do
begin

if [sort[j] > sort[j+1]
swap (sort[i],sort[j+1])

end
end

return

14.6.3. Example bubble.c

#include<stdio.h>
#include<stdlib.h>

void bubblesort(int sort[],int len);

C & Data Structures by Practice386

void main()
{

int len,i=0;
 int sort[30];
 printf(“\n enter no<0 to stop>”);
 scanf(“%d”,&sort[i]);
 while(sort[i]!=0)

{i++;
 printf(“\n enter no<0 to stop>”);

 scanf(“%d”,&sort[i]);
}
len=i; //length is taken as i and not as i+1 as 0 is also stored in the array

 bubblesort(sort,len); //call the function bubblesort which will sort the array
 printf(“\n **** Sorted Array **** \n”);

 for(i=0;i<len;i++)
 printf(“%d\t”,sort[i]);

}
void bubblesort(int sort[],int len)
{int i,j,temp;
 for(i=1;i<len;i++)

{for(j=0;j<len-i;j++)
 {if(sort[j]>sort[j+1])
 {temp=sort[j];
 sort[j]=sort[j+1];
 sort[j+1]=temp;
 }//end of if

 }//end of for(j)
 }//end of for(i)
}//end of bubblesort
/*Output:
 enter no<0 to stop>34
 enter no<0 to stop>12
 enter no<0 to stop>45
 enter no<0 to stop>32
 enter no<0 to stop>16
 enter no<0 to stop>0
 **** Sorted Array ****
12 16 32 34 45 */

14.6.4 Complexity of Bubble Sort

Let n be the input data size then we can see that during the first iteration the number of inner loop
iteration (n-1) for the second iteration the number of inner loop iterations is (n-2), continuing

387Searching and Sorting

Iteration No. No. of inner loop iterations
1 n-1
2 n-2
3 n-3
. ….
. ….
. ….

n-1 1
[___________________

Total no. of iterations = (n-1)+(n-2)+(n-3)+…..1
= 1+2+3+……..(n-1)
= n(n+1)/2

For sufficiently large value n the above value can be approximated to n2 thus the complexity of bubble
sort is O(n2)

 14.7 SELECTION SORT
Compare 1st element with all other elements in each iteration set lowest as minimum(Min). At the end of
iteration swap min and 1st element. Now continue with 2nd element same procedure. Continue with this
procedure till entire array is exhausted.

14.7.1 Example :

Input OO PQ NM RR NQ Array :

Initialization set Min = 22

Iteration 1 :
Comparison new Min

OO PQ NM RR NQ (22,34) 22

OO PQ NM RR NQ (22,10) 10

OO PQ NM RR NQ (10,55) 10

C & Data Structures by Practice388

OO PQ NM RR NQ (10,14) 10

Swap (22,10) NM PQ OO RR NQ

Min value is put into place

Iteration 2 :
Comparison new Min

NM PQ OO RR NQ (34,22) 22

NM PQ OO RR NQ (22,55) 22

NM PQ OO RR NQ (22,14) 14

Swap (34,14) NM NQ OO PQ RR

Iteration 3 : (Min = 22)
Comparison new Min

NM NQ OO PQ RR (22,34) 22

NM NQ OO PQ RR

(22,55) 22

Iteration 4 : (Min = 34)
Comparison new Min

389Searching and Sorting

NM NQ OO PQ RR (34,55) 34

Sorted Array = NM NQ OO PQ RR

Length of array = 5

Note: No. of iterations = 4 = (5-1) = (length – 1)

14.7.2 Algorithm :
Selectsort(sort[],len)
for i=0 to i<len-1 do
begin

min=i
for j=i+1 j<len do
begin

if[sort[j] < sort[min]
min=j

end
if(min != i)

swap(sort[min],sort[i])
end

14.7.3 Program:selection.c
//program to demonstrate selection sort
#include<stdio.h>
#include<stdlib.h>
void selectsort(int sort[],int len);

void main()
{int len,i=0;
 int sort[30];
 printf(“\n enter no<0 to stop>”);
 scanf(“%d”,&sort[i]);
 while(sort[i]!=0)

{i++;
 printf(“\n enter no<0 to stop>”);

 scanf(“%d”,&sort[i]);
}
len=i; //length is taken as i and not as i+1 as 0 is also stored in the array

 selectsort(sort,len); //call the function selectsort which will sort the array
 printf(“\n **** Sorted Array **** \n”);

 for(i=0;i<len;i++)
 printf(“%d\t”,sort[i]);

C & Data Structures by Practice390

}
void selectsort(int sort[],int len)
{int i,j,temp,min;
 for(i=0;i<len-1;i++)

{min=i;
 for(j=i+1;j<len;j++)

 {if(sort[j]<sort[min])
min=j;

 }
 if(min!=i)

 {temp=sort[min];
sort[min]=sort[i];
sort[i]=temp;

 }
 }//end of for(i)

}//end of select sort
Output:
 enter no<0 to stop>45
 enter no<0 to stop>12
 enter no<0 to stop>34
 enter no<0 to stop>65
 enter no<0 to stop>10
 enter no<0 to stop>0
 **** Sorted Array ****
10 12 34 45 65

14.7.4 Selection Sort Complexity Analysis

For the first iteration the number of inner loop iterations is n-1 for the second iteration the no. of
inner loop iterations is n-2 continuing we get total no. of iterations is

(n-1)+(n-2)+(n-3)+………+1 = n(n-1)/2

Therefore, complexity of Selection sort is O(n2). The number of interchanges is always n-1. Hence
selection sort is O((n2) for both best case and the worst case.

 14.8 INSERTION SORT
This is an interesting sort and very efficient for small amount of input data. To understand the concept,
imagine how a class teacher sorts a column of students as per their heights. We have to insert elements
in to correct slots. Two activities involved in insertion are

Finding correct position to insert.
Moving other element and make space for this new element to b inserted

391Searching and Sorting

14.8.1 Example

Consider an input array ‘a’ as shown

NOPM NQ QQ NM OO

Insertion 1 :
Step 1: Assign a pointer ‘i’ to the second element of the array and place this element in temp.

Temp

PM NQ

á

QQ NM OO
12

Step 2: Now shift elements which are to the left of i and which are greater than temp, by one
position to the right. Continue this process till you find an element which is smaller than
temp or you if you reach the beginning of the array.
As 30 is greater than 12 shift it to the right

Temp

PM NQ QQ NM OO 12

Step 3: Now place the temp value 12 in the slot that has been created

PMNO NQ QQ NM OO

á

Step 4: Increment ‘i’ to point to 14 and repeat steps 1 to 4. Keep continuing this process till ‘i’
reaches the end of the array

Insertion 2:
Temp Compare

NO PM QQ NM OO

á

14 (30,14)

shift
NO PM QQ NM OO

á

14 (12,14)

C & Data Structures by Practice392

NO NQ PM QQ NM OO

á

Terminate and place 14 in slot

Insertion 3:
Temp Compare

NO NQ PM NM OO

á

44 (30,44)

NO NQ PM NMQQ OO

á

Terminate and place 44 in slot

Insertion 4:
Temp Compare

NO NQ PM QQ OO

á

10 (44,10)
Shift

Temp Compare

NO NQ PM QQ OO

á

10 (30,10)
Shift

NO NQ PM QQ OO

á

10 (14,10)
Shift

NO NQ PM QQ OO

á

10 (12,10)
Shift

NO NQ PM QQ OO

á

10 Terminate

NONM NQ PM QQ OO

á

Terminate and place in 10 in slot

393Searching and Sorting

Insertion 5:
NONM NQ PM QQ

á

22 (44,22)
Shift

NONM NQ PM QQ

á

22 (30,22)
Shift

NONM NQ PM QQ

á

22 (14,22)
Terminate

NONM NQ PMOO QQ Terminate and place 22 in slot

14.8.2 Algorithm for Insertion Sort

for i=1 to i<len
begin

temp = sort[i]
for j=I to j=1

for j=i to j=1
begin

if [sort[j-1] > temp]
sort[j] = sort[j-1] // shift one position to the right

end
sort[j] = temp

end

14.8.3 Program:insort.c

//program to demonstrate insertion sort
#include<stdio.h>
#include<stdlib.h>

void insort(int sort[],int len);

void main()
{int len,i=0;
 int sort[30];
 printf(“\n enter no<0 to stop>”);
 scanf(“%d”,&sort[i]);
 while(sort[i]!=0)

{i++;

C & Data Structures by Practice394

 printf(“\n enter no<0 to stop>”);
 scanf(“%d”,&sort[i]);
}
len=i; //length is taken as i and not as i+1 as 0 is also stored in the array

 insort(sort,len); //call the function qsort which will sort the array
 printf(“\n **** Sorted Array **** \n”);

 for(i=0;i<len;i++)
 printf(“%d\t”,sort[i]);

}
void insort(int sort[],int len)
{int temp,i,j;
 for(i=1;i<len;i++)

 {temp=sort[i];
 for(j=i;j>0 && sort[j-1]>temp;j—)

 sort[j]=sort[j-1];
 sort[j]=temp;

 }
}
/*Output:
 enter no<0 to stop>67
 enter no<0 to stop>34
 enter no<0 to stop>42
 enter no<0 to stop>35
 enter no<0 to stop>14
 enter no<0 to stop>0
 **** Sorted Array ****
14 34 35 42 67 */

14.8.4 Insertion Sort Complexity Analysis :

For the first iteration the no. of inner loop iterations is 1 for the second iteration the no. of inner
loop iterations is 2 continuing we get for the last iterations i.e. the (n-1)th iteration number of inner loop
iterations is (n-1). Thus the total number of iterations is

1+2+3+………..(n-1) = n(n-1)/2
Therefore, complexity of Insertion Sort is O(n2)

Consider the following input array

NM NN NO NP NQ NR

We can observe that for the first iteration the number of inner loop iterations is 1 for the second
iteration the number of inner loop iterations is 1 and even for the (n-1)th iteration it is 1, thus the total
number of iterations is

395Searching and Sorting

1+1+1+…………………..1 = (n-1)

Therefore we can conclude that for an already sorted input the complexity for insertion sort O(n).

In many applications we will come across input arrays that are nearly sorted, in that case it is
advisable to choose insertion sort over bubble or selection sort as for a nearly sorted array insertion
sort will have a linear complexity[O(n)]. Whereas both Bubble and Selection Sorts will have a complexity
of O(n)

 14.9 QUICK SORT

In Quick sort we divide the array to be sorted into two sub arrays, and then recursively sort each of
these sub arrays. Division into sub array involves choosing a pivot element, this pivot element could be
the first element, last element, or any element of the array. Once the pivot element is chosen rearrange
the array such that values smaller than the pivot element are placed to the left of it and values larger than
the pivot element are placed to the right of it.

14.9.1 Example:

OM

á g m áîç í

QQ NO OP TU RS NQ UV QM

Step 1 : Choose 40 as Pivot element choose two pointers to point to the first element of the array
and the element immediately preceding the Pivot element.

Step 2 : Keep incrementing ‘i’ till a[i] < a[Pivot]

OM

á g m áîç í

QQ NO OP TU RS NQ UV QM

Step 3 : Keep decrementing ‘j’ till a[j] > a[Pivot]

OM

á g

QQ NO OP TU RS NQ UV QM

C & Data Structures by Practice396

Step 4 : Swap a[i] and a[j]

OM

á g

NQ NO OP TU RS QQ UV QM

Step 5 : Repeat Step 2 i.e.. Keep incrementing ‘i’ till a[i] < a[Pivot]

OM

á g m áîç í

NQ NO OP TU RS QQ UV QM

Step 6 : Repeat Step 3 i.e.. Keep decrementing ‘j’ as long as a[j] > a[Pivot]

OM

ág m áîç í

NQ NO OP TU RS QQ UV QM

Step 7 : At this point ‘i’ has crossed ‘j’ and we can observe that all element from ‘i’ upto Pivot – 1
are largest than the Pivot element. And all elements from ‘j’ to the starting of the array are
less than the Pivot elements.
Now swap a[i] and a[Pivot] i.e. swap [78,40]

OM

ág m áîç í

NQ NO OP QM RS QQ UV TU

Now if you see 40 occupies correct place in the array as all elements to the right of it are
larger and to the left of it are smaller to it

Step 8 : Partition the array into smaller arrays

OM

OM RSQM

~êê~ó=N ëçêíÉÇ =ÉäÉãÉåí ~êê~ó=O

NQ

NQ QQ

NO

NO UV

OP

OP TU

QM RS QQ UV TU

Step 9 : Now for each of the sub array proceed with steps 1-8 to obtain a fully sorted array

397Searching and Sorting

OM RSQMNQ QQNO UV

máîç í m áîç í

OP TU

NO NQ OP OM QM RS QQ TU UV

á á àm áîç í m áîç í

NO NQ OP OM QM RS QQ TU UV

NO NQ OP OM QM QQ RS TU UV

14.9.2 Algorithm for Quick Sort :

Procedure QSort[int sort[], int lo, int hi]

Where sort[] is the input array which has to be sorted, ‘lo’ and ‘hi’ are indexes to the first and last
elements of the sub array that has to be sorted.

If (lo >= hi)
Return;

Initialize :
i = lo-1
j = hi
pivot = sort[hi] // set pivot element to print to last element of the array

while (i < j)
{

while (Sort[++i] < pivot);
while (j>=0 && sort[—j] > pivot);

if (i<j)
swap(sort[i],sort[j])

}
14.9.3 Program:qsort.c

//program to demonstarte quicksort
#include<stdio.h>
#include<stdlib.h>

void qsort(int sort[],int lo,int hi);

void main()
{int len,i=0,hi;
 int sort[30];

C & Data Structures by Practice398

printf(“\n enter no<0 to stop>”);
 scanf(“%d”,&sort[i]);
while(sort[i]!=0)
{i++;

 printf(“\n enter no<0 to stop>”);
 scanf(“%d”,&sort[i]);
}
len=i; //length is taken as i and not as i+1 as 0 is also stored in the array

 hi=len-1;;
 qsort(sort,0,hi); //call the function qsort which will sort the array
 printf(“\n **** Sorted Array **** \n”);

 for(i=0;i<len;i++)
 printf(“%d\t”,sort[i]);

}
void qsort(int sort[],int lo,int hi)
{ if(lo>=hi)
 return;
 int temp;
 int j=hi;
 int i=lo-1;
 int num=sort[hi]; //it is the number we choose to divide the array
 while(i<j)

{while(sort[++i]<num);
 while(j>=0 && sort[—j]>num);
 if(i<j) //swap sort[i] and sort[j]

 {temp=sort[i];
 sort[i]=sort[j];

 sort[j]=temp;
 }

}
 temp=sort[i];
 sort[i]=sort[hi];
 sort[hi]=temp;;
 qsort(sort,lo,i-1);
 qsort(sort,i+1,hi);
}
/*Output:
 enter no<0 to stop>78
 enter no<0 to stop>12
 enter no<0 to stop>32
 enter no<0 to stop>45
 enter no<0 to stop>54
 enter no<0 to stop>10
 enter no<0 to stop>9

399Searching and Sorting

 enter no<0 to stop>0
 **** Sorted Array ****
9 10 12 32 45 54 78*/

14.9.4 Complexity of Quick Sort

Best Case Analysis
In this case the pivot element divides the array into two sub arrays of equal length. To compute the

complexity consider two arrays with input data size of 4(n) and 8(2n) respectively.
Input size = 4 Input size = 8

å

Partition 1 Partition 1

åLOå LO

Partition 2 Partition 2

Partition 3

No .of partitions = 2 No of partitions = 3

As seen from the figure the number of partitions required for an array with input data size 4 is 2 and for
the array with input data size 8 is 3. As doubling the input data size from 8 to 4 resulted in only one extra
partition. Thus we can conclude by definition that partitioning proceeds with log n complexity. During
each partition the number of comparisons is n-1 which can be approximated to n for large n. Thus the
complexity of Quick Sort is o(nlogn).

Worst Case Analysis
Suppose the input is an already sorted or almost sorted, and if we choose our pivot as either the first or
the last element, then as seen from the figure the input array gets divided into two sub arrays of size (n-
1) and 0, continuing the array further gets divided into (n-2) during the 2nd iteration, (n-3) during the 3rd

iteration and so on. The number of comparisons for the 1st iteration would be (n-1), for the 2nd iteration
it would be (n-2), continuing the total no. of iterations is

(n-1) + (n-2) + (n-3) +…………………+ 1

which can be approximated to n(n+1) /2 thus the worst case time complexity of Quick Sort is O(n2) if
the input is almost or already sorted. One way to overcome this problem is to choose the pivot element
randomly, rather than choosing the first or the last element.

C & Data Structures by Practice400

 14.10 HEAP SORT

Heap is a complete binary tree, whose each path from the root to leaf is in ascending order i.e.. parent
is always grater than or equal to its children

Fig. 14.3 represents a heap as all paths from root
to leaf are in ascending order.

67 > 23 > 15 > 10
67 > 23 > 12
67 > 56 > 45
67 > 56 > 34

note that root is the largest element of the heap

ST

OP

NR

NM

NO QR PQ

RS

Fig 14.3 A heap tree

14.10.1 Mapping of Complete Binary Tree

A natural mapping exits by in which a complete binary tree can be mapped into an array. To
map a complete binary tree into an array follow the steps shown below.

Step 1: Mark all nodes as shown in the fig. start by marking root as 0, and proceed level by level until
all nodes have been marked.

401Searching and Sorting

ST

OP

NR

NM

NO QR

RS

PQ

M

O

SR
QP

N

T

Step 2 : Map elements to their corresponding locations in the array i.e.. node 0 maps to location 0 in the
array, node 1 maps to location 1 and so on.

ST

OP

NR

NM

NO QR

RS

PQ

M

O

SRQP

N

T

ST

M N O P Q R S

OP RS NR NO QR PQ NM

The mapping of a complete binary tree into an array is a two way mapping i.e.. an array can be mapped
back into a complete binary tree, to map the array onto a complete binary tree map the elements at index
0 to node 0, element at index 1 to node 1 and so on.

ST

M N O P Q R S T

OP RS NR NO QR PQ NM ST

OP

NR

NM

NO QR

RS

PQ

M

O

SRQP

N

T

An array is said to have a heap property if the corresponding complete binary tree to which it is mapped
has the heap property. Array 1 shown in the figure has the heap property where as array 2 does not have
the heap property.

C & Data Structures by Practice402

RS

NO

NM

O

V OO

PQ

NR

M

O

SRQP

N

T

RS

M N O P Q R S T

NO PQ NM V OO NR O

QR

RS

OU

QO OO

ST NO

PQ

NR

M

O

SRQP

N

T U

QR

M N O P Q R S T U

RS PQ OU ST NO NR QO OO

14.10.2 Properties of the Mapped Array :

For an element with index ‘i’ in the array, (i-1)/2 represents index of its parent and 2i+1 represent
indices of its children

For eg: Consider element 23 in fig 14.3
Index of element 23 = i = 1
Index of parent = (i-1)/2 = 0 element at index 0 = 67
Index of children = 2*i+1 = 3 element at index 3 = 15:left child

 2*i+2 = 4 element at index 4 = 12: right child

Thus for the element 23 parent is 67 and children are 15 and 12, which is true as seen from the
complete binary tree

If n is the length of the array then all elements with indices less than n/2
 represent non leaf nodes.

For eg : size of array n=8 n/2 = 3

Therefore elements with indices 0,1,2 and 3 which are 67,23,56 and 15
 respectively represent non leaf nodes

403Searching and Sorting

14.10.3 Heap Sort

In Heap sort the input array is first made in to a heap. Converting the input array in to a heap
involves rearranging the elements of the array so that it now possesses the heap property. Once the
conversion to heap is complete the largest element now occupies the first position the array, this element
is swapped with last element of the array so that the largest element occupies its correct place in the
array, now the last element is left out and the remaining array is again converted to heap and once again
the largest element of this remaining array occupies the first position, the largest element is swapped
with last element so that it now occupies its correct position in the original array and the process is
continued till all elements are sorted.

Example Heap create :
Iteration 1 :

QR OP RS ST NO NR TU PQ

QR

EMF

O
OP

ST NO NR

RS

TU

PQ

N

P

píêìÅíì êÉ bèìáî~ äÉåí=d ê~éÜ

Step 1 : Set ‘i ‘ so that i = len / 2 -1 i.e.. ‘i’ points to the last non leaf node

QR

á

OP RS ST NO NR TU PQ

Step 2 : Set pointer ‘j’ to the point to the larger of the two children of the current parent. In the
present case only one child 34 is present so point ‘j’ to 34

g

QR

á

OP RS ST NO NR TU PQ

Step 3 : Compare Sort[i] and Sort[j] if Sort[i] < Sort[j] swap Sort[i] and Sort[j]. In this case as 67 >
34 no swapping is required.

g

QR

á

OP RS ST NO NR TU PQ

C & Data Structures by Practice404

As ‘j’ is pointing to a leaf node it implies that processing of the current node(67) is complete. So we
can begin to process the next leaf node which in this case is 56.

Iteration 2 :
Step 1 :

g

QR

á

OP RS ST NO NR TU PQ

As seen 56 has two children 15 and 78. So set ‘j’ to point to the larger of the children, which
in this case is 78

Step 2 : As Sort[i] < Sort[j] i.e. (56 < 78)
Swap Sort[i] and Sort[j]

g

QR

á

OP TU ST NO NR RS PQ
QR

OP

ST NO NR

TU

RS

PQ

Step 3 : ‘j’ is pointing to a non leaf node so move on to process the next elements
Iteration 4 : Repeat steps 1 to 2 as shown in Iteration 3 to process the current node which is 45

g

QR

á

ST TU PQ NO NR RS OP

g

TU

á

ST QR PQ NO NR RS OP
TU

ST

PQ NO NR

QR

RS

OP

405Searching and Sorting

g

TU

á

ST QR PQ NO NR RS OP

TU ST RS PQ NO NR QR OP
TU

ST

PQ NO NR

QR

RS

OP

We can see that the array now has the heap property as

78 > 67 > 34 > 23

78 > 67 > 12

78 > 56 > 15

78 > 56 > 45

14.10.4 Example Heap Sort

Initialization : Given an input array, as a first step rearrange the array so that it has the heap property
for doing this use heap create algorithm as discussed above

Let input array be

QR OP RS ST NO NR TU PQ

By rearranging using the heap create algorithm, we get

TU ST RS PQ NO NR QR OP
TU

ST

PQ NO NR

RS

QR

OP

 After performing the heap create operation we can observe that the largest element occupies the first
position in the array.

C & Data Structures by Practice406

Iteration 1 :
Step 1 : Swap (Sort[0] and Sort[len-1]) i.e.. swap the first and the last element

OP ST RS PQ NO NR QR TU
OP

ST

PQ NO NR

RS

QR

TU

78 which is the largest element of the array has now been placed at its correct position so now we
can leave 78 out and consider only the remaining elements

OP ST RS PQ NO NR QR TU
OP

ST

PQ NO NR

RS

QR

Step 2 : After swapping and removal operation the array has lost its heap property. So we once again
apply the heap create algorithm to restore the heap property

OP STST PQRS RSPQ OPNO NONR NRQR QR
eÉ~é=ÅêÉ~ íÉ

OP ST

ST PQ

PQ OPNO NONR NR

RS RS

QR QR

Iteration 2 :
Applying step 1 and step 2 as shown in Iteration 1 we get

ST QR

PQ PQ

OP OPNO NONR NR

RS
pï~é

oÉãçîÉ

RS

QR ST

407Searching and Sorting

ST QR

PQ PQ

OP OPNO NONR NR

QR
eÉ~é=ÅêÉ~ íÉ

pçêíÉÇ=~êê~ó=íáää=åçï

RS

ST TU

Iteration 3 :

RS NR

PQ PQ

OP OPNO NONR RS

QR
pï~é

oÉãçîÉ

QR

QR NR

PQ PQ

OP OPNO NO

QR
eÉ~é=ÅêÉ~ íÉ

pçêíÉÇ=~êê~ó=íáää=åçï

RS

RS ST TU

Iteration 4 :

QR NO

PQ PQ

OP OPNO QR

NR
pï~é

oÉãçîÉ

NR

C & Data Structures by Practice408

PQ

OP

NO

NR
eÉ~é=ÅêÉ~íÉ

NO

PQ

OP

NR

pçêíÉÇ=~ êê~ó=íáää=åçï = QR RS ST TU

Iteration 5 :

PQ NO

OP OP

NO PQ

NR
pï~é

oÉãçîÉ

NR

OP NO

NO OPNR
eÉ~é=ÅêÉ~ íÉ

pçêíÉÇ=~êê~ó=íáää=åçï

NR

QRPQ RS ST TU

Iteration 6 :

pï~é

oÉãçîÉ

NR NR

OP NR

NO NO

NO NONR OP

eÉ~é=ÅêÉ~ íÉ

pçêíÉÇ=~ êê~ó=íáää=åçï PQOP RS ST TU

409Searching and Sorting

Iteration 7 :

pï~é

oÉãçîÉ

NR

NO

NO

NO

NR

píçé

pçêíÉÇ=~ êê~ó=íáää=åçï TRNO OP PQ RS ST TU

14.10.5 Algorithm for Heap Sort
 Procedure heapSort (int sort[], int len)

Initialization
// call the heapcreate function so that input array has the heap property
Heapcreate(sort,len)

While(len>0)
 {
 swap(sort[0], sort[len-1])
 /* after heap create, largest element is the root of the tree. Swap
 root of the tree, which is first element of the array with the last
 element so that largest element is sorted.*/

len—; // decrement the array to leave out already sorted element

//By restoring the elements the array has lost the heap property. Hence
 // call heapcreate() once again.
 heapcreate (sort,len);
 } // end of while

We have used heapcreate function. The algorithm is as follows

Heapcreate(int sort[], int len)
{

 n=len/2 – 1; // set n to point to last leaf node.
// Initialize the i to point to last leaf node and keep decrementing till
//all leaf nodes are processed.
j=i;
/* check whether j points to a leaf node, it it does not repeat the loop
till it points to leaf node*/

while(j*len/2 -1)

C & Data Structures by Practice410

 { // set i to point to left child of j, as left child is always present
 i = 2*j +1 ;
 // make n point to the parent of j which is the node currently being
 // processed
 n= (j-1)/2;
 // check if right child is present and determine the larger of the two
//children and point to it.
 if ((2*n+2) < len) && sort[j] < sort[j+1])
 j++
/* if – else statement below checks if the parent is larger than its
children. If yes, it breaks the loop so that next non leaf node can be
processed, otherwise it is swapped with the larger of its two children.
if (sort [n] > sort[j])
 break;
else
 Swap (sort[n], sort[j])

}// end of while
}// end of Heapcreate function

PROGRAM:HEAP.C
//program to demonstarte heapsort
#include<stdio.h>
#include<stdlib.h>

void heapsort(int sort[],int len);
void heapcreate(int sort[],int len);

void main()
{int len,i=0;
 int sort[30];
 printf(“\n enter no<0 to stop>”);
 scanf(“%d”,&sort[i]);
 while(sort[i]!=0)

{i++;
 printf(“\n enter no<0 to stop>”);

 scanf(“%d”,&sort[i]);
}
len=i; //length is taken as i and not as i+1 as 0 is also stored in the array

 heapsort(sort,len); //call the function heapsort which will sort the array
 printf(“\n **** Sorted Array **** \n”);

 for(i=0;i<len;i++)
 printf(“%d\t”,sort[i]);

}
void heapsort(int sort[],int len)
{int temp,k;
 heapcreate(sort,len);
 k=len;

 while(len>0)
 {temp=sort[0];

411Searching and Sorting

 sort[0]=sort[len-1];
sort[len-1]=temp;

 len—;
 heapcreate(sort,len);
 }

}
void heapcreate(int sort[],int len)
{int n,i,j,temp;
 n=(len/2)-1;
 for(i=n;i>=0;i—)

 { j=i;
 while(j<=len/2-1)

 {j=2*j+1;
n=(j-1)/2;

 if(2*n+2<len && sort[j]<sort[j+1])
 j++;

 if(sort[n]>=sort[j])
 break;

 else
{temp=sort[n];

 sort[n]=sort[j];
 sort[j]=temp;
}

 }
}

}
/*Output:
 enter no<0 to stop>34
 enter no<0 to stop>45
 enter no<0 to stop>12
 enter no<0 to stop>56
 enter no<0 to stop>21
 enter no<0 to stop>0
 **** Sorted Array ****
12 21 34 45 56*/

14.10.6 Complexity of Heap Sort

We know that a complete binary tree with N nodes has log (N+1) levels. For example if N = 31
then the number of levels is log(32) i.e. 5 levels

 The insertion in create heap function is O(log N) as a complete binary tree with N nodes has log
(N+1) levels and we have to access at leaf on node per level.

During the adjustment of heap while sorting, if one node per level is required to be accessed,
the complexity is O(log N+1).

Therefore heap sort containing creation and adjustment is O(N Log N).

C & Data Structures by Practice412

14.10.7 Which is better Heap or Quick sort

To recall quick sort has best case performance of N log N and a worst case performance of N2.

Heap Sort is far superior to heap sort in the worst case. Heap sort is only NLogN whereas Quick
Sort is N2. Interestingly heap sort is O(NLogN) for both best and worst case. Then what is the catch?

Heap Sort is NOT efficient for small size data sets, as it requires considerable over heads for creation
and adjustment of heaps. Computation of fathers and sons is also an overhead. Further Heap Sort
require additional space to hold the record for swapping during heap adjust operation.

OBJECTIVE QUESTIONS

1. The two most important factors to consider in evaluating an algorithm are —————————
——— and ——————————.

2. The big O notation is used to describe the variation of f(n) as n varies TRUE/FALSE
3. if f(n) = constant for all n then the complexity is of the order

a) O(N) b) O(1)
c) O(k) d) O(constant)

4. The worst case complexity of linear search is
a) O(N) b) O(1)
c) O(k) d) O(constant)

5. The best case for complexity of algorithm one can expect is is
a) O(N) b) O(1)
c) O(NlogN) d) O(N2)

6. If the input size doubles, then if time consumed by algorithm also doubles, we can say complexity
is.
a) O(1) b) O(NlogN)
c) O(N2) d) O(N)

7. when the algorithm takes N^2 steps for an input of N, we would say that complexity is
a) O(1) b) O(NlogN)
c) O(N2) d) O(N)

8 If the input size doubles and algorithm takes more than twice that of n, the complexity is of the
order of
a) O(1) b) O(NlogN)
c) O(N2) d) O(N)

9. The worst case complexity of binary Search is for input of numbers is ———————————
10. The worst case complexity of bubble Sort is,for input of n numbers is———————————
11. The worst case complexity of bubble Sort is,for input of n numbers is

a) O(1) b) O(NlogN)
c) O(N2) d) O(N)

413Searching and Sorting

12. The worst case complexity of Insertion Sort input of n numbers is
a) O(N2) b) O(1)
c) O(NlogN) d) O(N)

13. The best case complexity of Insertion Sort input of n numbers is for an almost sorted input array
a) O(N2) b) O(1)
c) O(NlogN) d) O(N)

14. The best case complexity of Quick Sort input of n numbers is
a) O(N2) b) O(1)
c) O(NlogN) d) O(N)

15. The worst case complexity of Quick Sort input of n numbers is for an almost sorted input array
a) O(N2) b) O(1)
c) O(NlogN) d) O(N)

16. Average performance of Heap Sort is inferior to quick sort True/False.

REVIEW QUESTION

1. Write and explain linear search procedure with a suitable example.
2. Discuss in detail about the following searching methods

a) sequential search
b) Binary search using iteration technique

3. Write in detail about the following
a) selection sort
b) Heap sort

4. Explain the Big O notation.
5. Discuss time and space requirements of a algorithm.
6. Explain why binary search is superior to linear search.
7. Write algorithm for insertion sort. Explain with an example.
8. Compare the algorithms for Quick Sort and Insertion sort. For an almost sorted array which is

better and why?
9. Compare the algorithms for Heap sort and Quick sort.

SOLVED PROBLEMS

1. Write a program to sort a list of names using heap sort
// charheapsort.c. Aprogram to sort the two dimensional
//array of strings using heap sort
#include<stdio.h>
#include<string.h>

C & Data Structures by Practice414

void heapcreate(char name[][10],int len);
void heapsort(char name[][10],int len);

void main()
{char name[10][10];//10 names max size 10
 int len,i=0;
 printf(“\nEnter name<stop to end>:”);
 scanf(“%s”,name[i]);
 while(strcmp(name[i],”stop”))

{i++;
 printf(“\nEnter name<stop to end>:”);

 scanf(“%s”,name[i]);
}

 len=i;
heapsort(name,len);

 printf(“\n***sorted list***”);
 for(i=0;i<len;i++)
 printf(“\n%s”,name[i]);
}

void heapsort(char name[][10],int len)
{
 char temp[10];
 heapcreate(name,len);
 while(len>0)
 {//swap first and last element

 strcpy(temp,name[len-1]);
 strcpy(name[len-1],name[0]);
 strcpy(name[0],temp);
 len—;
 heapcreate(name,len); //name array has lost heap property so retsote it

 }
}

void heapcreate(char name[][10],int len)
{
 int n,i,j;
 char temp[10];
 n=len/2-1; //point n to the last non leaf node
 for(i=n;i>=0;i—)
 { j=i;
 while(j<=len/2 -1)
 { j=2*j+1;
 n=(j-1)/2;

415Searching and Sorting

 if(2*n+2<len &&(strcmp(name[j],name[j+1])==-1))//check if right son exists and also find
j++; //greater of two children

 if(strcmp(name[n],name[j])==1||strcmp(name[n],name[j])==0)
 break;
 else

 { strcpy(temp,name[j]);
 strcpy(name[j],name[n]);

 strcpy(name[n],temp);
 }

 }
 }

 }

/*Output
Enter name<stop to end>:sachin
Enter name<stop to end>:arvind
Enter name<stop to end>:rohit
Enter name<stop to end>:srinivas
Enter name<stop to end>:anil
Enter name<stop to end>:stop
sorted list
anil
arvind
rohit
sachin
srinivas*/

2 Write a program to search for a name given a two dimensional char array named List. Use
binary search technique.

//charbinsearch.c
#include<stdio.h>
#include<string.h>

int binsearch(char name[],char list[][10],int lo,int hi);

void main()
{
 char list[10][10];
 char name[10];
 int len,i=0,key;
 int lo=0,hi;
 printf(“\nenter sorted list only.....”);
 printf(“\nEnter name<stop to end>:”);

C & Data Structures by Practice416

 scanf(“%s”,list[i]);
 while(strcmp(list[i],”stop”))

{i++;
 printf(“\nEnter name<stop to end>:”);

 scanf(“%s”,list[i]);
}

 len=i;
hi=len-1;

 printf(“\nnames in list......\n”);
for(i=0;i<len;i++)
 printf(“%s\t”,list[i]);

 printf(“\nenter name to search:”);
 scanf(“%s”,name);

key=binsearch(name,list,lo,hi);

 if(key==-1)
 printf(“\nname does not exist in the list”);

 else
printf(“name found at index %d in the list\n”,key);

}

int binsearch(char name[],char list[][10],int lo,int hi)
{
 int mid,key;

if(lo>hi)
 key=-1;
else
{mid=(lo+hi)/2;

 if(strcmp(list[mid],name)==0)
 key=mid;
 else

 if(strcmp(list[mid],name)==-1)
 {lo=mid+1;
 key=binsearch(name,list,lo,hi);
 }

 else
 { hi=mid-1;
 key=binsearch(name,list,lo,hi);
 }

 }
return(key);

}

417Searching and Sorting

/*Output
enter sorted list only.....
Enter name<stop to end>:barath
Enter name<stop to end>:gurudutt
Enter name<stop to end>:raman
Enter name<stop to end>:ravi
Enter name<stop to end>:sumit
Enter name<stop to end>:stop

names in list......
barath gurudutt raman ravi sumit
enter name to search:raman
name found at index 2 in the list
*/

 ASSIGNMENT QUESTIONS

1. Formulate recursive algorithm for binary search with its timing analysis
2. Write a, c, program that searches a value in a stored array using binary search (worst case and

best case)
3. Explain the algorithm for selection sort and give a suitable example
4. Suppose that the list contains the integers 1,2, 8 in this order, Trace through the binary search to

determine what comparisons of keys are done in searching.
a) to locate 3
b) to locate4,5

5. Write and explain non-recursive algorithm for binary search with suitable example and discuss
the various complexities of binary search

6. Explain quick sort algorithm. Analyze the worst case performance of quick sort and compare with
selection sort.

7. Write a program to sort the array of integers
8. Construct a tree for the expression given and give pre order and post order expression.

 a) A * B + C b) (A^B) * C c) A + (B^C) * D ^(E + F)

Solutions to Objective Questions
1) speed , space 2) True 3) b 4) a 5) b 6) d
7) c 8) b 9) log n 10) n2 11) c 12) a

13) d 14) c 15) a 16) True

This page
intentionally left

blank

1(a). What are different types of integer constants? What are long integer constants? How do
these constants differ from ordinary integer constants? How can they be written and iden-
tified?

a) Integer Constants : An integer constant refers to a sequence of digits. There are three types of
integer namely, decimal, octal and hexadecimal.They can be sub divided into

Decimal integer constants : 0 10 -745 999

Unsigned integer constant an be specified by appending letter U at the end.
Ex : 55556U or 55556u

Long integer constant can be specified and identified by appending the letter l s at the end .
For example 789654234L or 7896s

Octal integer constants :only digits between 0 to 7 are allowed. All Octal numbers must start
with 0 digit to identify as octal number
Allowed octal constants : 0777 , 001 , 0197 , 07565L (octal long)
Illegal octal constants are : 089 - 8 is illegal , 777 - does not start with 0

: - 0675.76 - . is illegal
Hexa decimal constants : A hexa decimal number must start with 0x or 0X followed by digits
0 to 9 or alphabets a to f, both upper case or lower case allowed. Allowed hexa decimal
constants are : 0xffff , 0xa11f , 01 , 0x65000UL
Illegal hexa decimal constants are : 0x14.55 , illegal character “.”

1(b). Describe two different ways that floating – point constants can be written in C. What
special rules apply in this case?

Ans: Integer numbers are inadequate to represent quantities that continuously, such as distance, heights,
temperatures, prices, and so on. These quantities are represented by numbers containing frac-
tional parts like 17.548. Such numbers are called real or floating point constants. They are base
– 10 number that can be represented either in exponent form or decimal point representation.
Examples of real constants shown in decimal notation, having a whole number followed by a
decimal point and the fractional part are:
0.0083 -0.75 435.36 +247.0

 QUESTION PAPERSJNTU
Fully Solved

Code No: RR10203 Set No.2

Apr/May 2006

C & Data Structures by Practice420

It is possible to omit digits before decimal point or digits after the decimal point
215. .95 -.71 +.5

A real number may also be expressed in exponential (or scientific) notation. For example, the
value 215.65 may be written as 2.1565e2 in exponential notation. E2 means multiply by 10^2.
The general form is Mantissa e exponent

The mantissa is either a real number expressed in decimal notation or an integer. The exponent
is an integer number with an optional plus or minus sign.

Valid floating point constants are : 0.01 , 789.89765 , 5E-5 , 1.768E+9
Invalid floating point declarations are:
6 invalid . must contain exponent or float point.
5E+12.5 Invalid as exponent can not be float.
6,789.00 Invalid character “,”

1(c). What is a character constant? How do character constants differ from numeric type of
 constants?
Ans: Character constants. Character constants can be declared based on the character set followed

in a computer. ANSI have standardized these values as shown below.
A 65 a 097 NULL 000
B 66 b 098 LF(line feed) 010
Z 90 z 122 CR(carriage return) 013

A character constant contains a single character enclosed within a pair of single quote marks.
Examples of character constants are:

‘5’ ‘X’ ‘;’ ‘ ‘
Note that the character constant ‘5’ is not the same as the number 5. the last constant is a blank
space. Character constants have integer values known as ASCII values. For example, the
statement

 printf(“%d”,’a’);
would print number 97, the ASCII value of letter a. Since each character constant represent an
integer value it is also possible to perform arithmetic operations on character constants.

Special Characters that can not be printed normally , double quote(“) ,apostrophe(‘), question
mark(?) and backslash(\) etc can be represented by using escape sequences. An escape sequence
always starts with \ followed by special character stated ove .

2.(a) Write a program to sort set of strings in an alphabetical order ?
Ans: To sort the given set of strings we can use any sorting algorithm here we use

Bubble sort, to compare two strings we use function
 strcmp(const char *s1,const char *s2)
 which returns an integer <0 if s1 is less than s2
 =0 if s1 is equal to s2

421JNTU-Question Papers

 >0 if s1 is greater than s2
 //stgsort.c
 #include <stdio.h>
 #include <string.h>
 main()
 { int i,j,n;
 char a[10][20],t[20];
 printf(“Enter the number of strings :”);
 scanf(“%d”,&n);
 for(i=0;i<n;i++)
 scanf(“%s”,a[i]);// read the strings
 for(i=0;i<n-1;i++) //bubble sort
 for(j=0;j<n-1-i;j++)

 if(strcmp(a[j],a[j+1])>0)
{ strcpy(t,a[j]);

strcpy(a[j],a[j+1]);
strcpy(a[j+1],t);

}
 printf(“The strings after sorting are : \n”);
 for(i=0;i<n;i++)
 {

printf(“ %s”,a[i]);// print the strings
printf(“\n”);

 }
 }

3(a). Differentiate between a structure and union with respective allocation of memory by
the compiler. Give an example of each.

Structure:
A structure is a collection of variables referenced under one name, providing a convenient
means of keeping related information together. A structure declaration forms a template that
can be used to create structure objects (that is, instances of a structure). The variables that make
up the structure are called members. (Structure members also commonly referred to as elements
or fields)
The keyword struct tells the compiler that a structure is being declared.

Struct addr
 {
 char name[30];
 char street[40];

C & Data Structures by Practice422

 char city[20];
 char state[3];
 unsigned long int zip;
 };
To declare a variable of type addr, we write

Struct addr addr_info;

This declares variable of type addr called addr_info. Thus, addr describes the form of a
structure(its type),and addr_info is an instance of the structure.

When a structure variable (such as addr_info)is declared, the compiler automatically allocates
sufficient memory to accommodate all of its members.

k~ãÉ PM=ÄóíÉë

píêÉÉ í QM=ÄóíÉë

pí~ íÉ P =ÄóíÉë

` áíó OM=ÄóíÉë

wáé Q =ÄóíÉë

 The above diag ram shows addr_info structure in memory.

Union:

Unions are useful when memory conservation is the criteria. Union , like structure holds data types
like int , char , float etc. However , the major difference is that union holds only one data object at a time.
Union calculates which of its declarations require maximum storage requirements and allocates memory
space accordingly. It means that all the variables declared in a Union share the same memory location.

Compiler handles different memory requirements of various data types automatically but it is users
responsibility to keep track of which data type is stored at a particular instant of time. Otherwise garbage
result. The general syntax of Union is

Storage class union nametag
 { data member 1;

 data member 2;
 } var1 , var2 , var3;

Let us declare a union called details to make the working clear.

union details
{ char country[12];

423JNTU-Question Papers

 float networth;
}indian, nri;

We have declared two variables resident and nri. They are of type details. Each of the variable
resident and nri can represent either country or networth at any one particular instant of time. The coun-
try[25] requires more storage slot 25 bytes than a float value. Therefore union allocates a block memory
space to each of the variable declared in the union. The union can be declared with in a structure. Note
that programmer has to keep track of the data variable that is active in the memory.

Methods of accessing union members are same as that of structure. As a matter of fact every thing we
discussed about structures hold good for unions as well.

3(b). Write a program to read n records of students and find out how many of them passed.
The fields are student’s roll no, name, mark and result. Evaluate the result as follows

If marks > 35 then
Result=”pass” else “Fail”

Ans: To program for this type of problems it is very hard to hold different values of one particular
student hence we use structure’s which gives the flexibility of housing various data types under
one name and this name can be given to student since there are no. of students for whom details
are to be checked so we use structure arrays the program is as shown below,
Program:
 #include <stdio.h>
 #include <string.h>
 struct student {

 int roll_no;//roll number
 char name[20];//name of student
 int mark;//marks obtained by student
 char result[10];//result
 };

 main()
{
 struct student s[10];
 int i,n,a=0;
 printf(“Enter the number of records : \n”);
 scanf(“%d”,&n);//n is no. of students
 for(i=0;i<n;i++)
 {

printf(“Enter roll_no , name , marks of student: \n”);
scanf(“%d %s %d”,&s[i].roll_no,s[i].name,&s[i].mark);//reading

 }

C & Data Structures by Practice424

 for(i=0;i<n;i++)
 if (s[i].mark > 35)

 {strcpy(s[i].result,”pass”);a++;}//a has value of no.of passed
 else

 strcpy(s[i].result,”fail”);
 printf(“The results of students are : \n”);
 for(i=0;i<n;i++)
 printf(“%d%d%s%d%s\n”,i,s[i].roll_no,s[i].name,s[i].mark,s[i].result);
 printf(“Out of %d students %d students passed”,n,a);

 }

The above program uses structure to take the details of all students since practically it is very hard
to bind together the details of a particular student which we can do with the help of structures. After
accepting the details the marks of students are checked and the variable result in structure is set appro-
priately to pass or fail.
4(a). Write a ‘C’ program to compute the sum of all elements stored in an array using

pointers.

Ans: The usage of pointers in arrays gives us the advantage of Dynamic memory
Management where the size of the array is decided by the program and memory can also be
deallocated. Here is a program to calculate the sum of numbers in an array using pointers.

 #include<stdio.h>
 #include<malloc.h>
 main()
 { int *a,i,n,result=0;
 printf(“Enter the no. of elements to be stored in array :”);
 scanf(“%d”,&n);
 a=(int *)malloc(n*sizeof(int));//allocating space
 printf(“Enter the elements :”);
 for(i=0;i<n;i++)
 scanf(“%d”,a+i);
 for(i=0;i<n;i++)
 result+=*(a+i);
 printf(“The sum of elements in array is :%d”,result);
 free(a);//deallocating space
 }

As shown in the above program the locations address being provided by a+i whereas when we add
elements we access the value stored in a+i location by *(a+i) . The space of array is not fixed but the
requirement is given by theuser at run time using malloc. Also this allocated memory can be deallocated

425JNTU-Question Papers

by using free which increases the reusability of space.

4(b). Write a ‘C’ program to using pointers to determine the length of a character string

Ans: String variable names are pointers to strings this is the reason we commonly do not use
symbol ‘&’ in scanf while accepting strings .Array names are pointers to the arrays . In the
program shown below we use a function rs() which returns a string pointer having the string
hence this pointer can be used wherever we require the string

//stglen.c
#include<stdio.h>
//function prototype declarations
int length(char x[]);
void main()
{ int ans;
 char x[20]; // dimension of string array x

printf(“enter a string:”);
scanf(“%s”,x); /*input string from the user*/
ans =length(x); /*function call*/

 printf(“length=%d\n”,ans);
getch();

}/*end of main*/
int length(char a[]) /*function definition*/
{ int i=0;

while(a[i]!=’\0') /*when the character is not null*/
 i++;
return i;

}/*end of function length*/
/*
enter a string:hello
length=5 */

5. Show how to implement a queue of integers in C by using an array int
q[QUEUESIZE],where q[0] is used to indicate the front of the queue, q[1] is used to indicate
its rear and where q[2] through q[QUEUESIZE -1] contain elements on the queue. Show
how to initialize such an array to represent the empty queue and write routines remove,
insert and empty for such an implementation.

Queues:

C & Data Structures by Practice426

A queue is a linear list of information that is accessed in first-in, first-out order, known as
FIFO. That is, the first item placed on the queue is the first item retrieved, and so on. This is
the only means of storage and retrieval in a queue; random access of any specific item is not
allowed.

ob^o
colkq

The above diagram represents a queue first element is indicated by front and the rear points to
ending of the queue. This is normal representation of queue.

According to the problem a queue of size QUEUESIZE is required which holds the information
regarding front of the queue in q[0] and information regarding rear of queue in q[1] and the
queue consists of elements from q[2] through q[QUEUESIZE-1]

This can be diagrammatically represented as follows:

è

cêçå í=è xOzcêçå í=áå Ñç êã~íáçå =è xM z

xnrbrbpfwbJN z

nrbrbpfwb

oÉ~ê=áåÑçêã~íáçå=èxNz

Init ializing

First we take the queue as an array say q [QUEUESIZE] we initialize the first element that is q [0]
with q [2] that is 2 which says that the first element is at location 2 of the array or the front of the queue
is at location 2 of the array q []. Initially when the queue is empty the front and rear both mean the same
location hence q [1] which has the information about rear of queue also has value 2 which says that queue
is empty .

The initializing of such a queue is given as follows:

 # define QUEUESIZE 10
 struct queue

{
int q [QUEUESIZE];

}

 INIT_queue (struct queue *A)

427JNTU-Question Papers

{
 A -> q [0] = 2;
 A -> q [1] = 2;
 }

Now the queue is initialized and initially represents an empty queue which can be tested by the
following function

int IsEmpty (struct queue *A)
 { return ((A -> q [0] = = 2) && (A-> q[1]==2) ? 1 : 0);
 }

The above function returns a value 1 if the queue is empty and 0. The function checks whether q [0]
which signifies the front and q [1] which is the rear of a queue are same since they were initialized to
same value that is 2. IsEmpty() returns 1 if the queue becomes empty.

Inserting

To insert a value into this type of queue we need to increment rear by using q[1]++ and inserting
the value in position q [q[1]] this implementation is shown in the function below

 Insert (struct queue *A, int x)
 {
 if (A->q [1] = = (QUEUESIZE-1))
 {
 printf(“Queue full”);
 return(0);
 }
 else A->q[1]++;
 A->q [A->q[1]] = x;
 }

The above function takes a structure queue and a value to be inserted in queue as arguments initially
checks if queue is full if the queue is not full then the value of q [1] which is rear of queue is incremented
and that value is used to place the value x in particular location of queue otherwise if queue is full q [1]
is incremented to a value equal to QUEUESIZE hence the queue does not accept any more elements once
a value is inserted the rear of queue increases by one more location showing a new element that has been
added to the queue.

Removing:

To remove an element from queue we use the function Remove which checks if currently the queue
is empty if it is empty then no elements could be removed. Otherwise the function increments the value
of front to show that a particular element which served as a front has been removed and its next element
is the present front thus serving in a FIFO fashion.

 int Remove (struct queue *A)

C & Data Structures by Practice428

 { int temp;
 if (Is_empty (A))
 { printf(“queue is empty”);
 exit(1);
 }
 if(A->q [0] = = QUEUESIZE-1)
 printf(“all elements removed”)
 else
 { temp= A->q [0];
 A->q[0]++ ; // increment the front value in the queue
 return (A-> q [temp]); // return the deleted element
 }
 }

Using the above function an element can be removed from the queue as q[0] is incremented the new
value of q[0] becomes the new front of the queue and the element that is removed from the queue is
returned by the function.

6 (a). Write routines a) to insert element at nth position b) to delete element at n th position in
a doubly linked List.

In double linked list an additional pointer to previous node is provided so that traversal can be
in any direction to the left of current node or to the right of current node.

Ñêçåí
é êÉî áçìë

kì ää

åÉñí

krii

struct doublellist
{ int data;
 struct doublellist *left;
 struct doublellist *right;
};
typedef struct doublellist node;

node *insert(int n,int val,node *list)
{ node *p,*temp;
 temp=list;

429JNTU-Question Papers

 p=(node *)malloc(sizeof(node));
 p->data=val;
 if(n==0)
 {p->right=NULL;
 p->left=list;
 list->right=p;
 list=p;
 }
 else
 { while(temp->data!=n && temp->left!=NULL)
 temp=temp->left; //find location oh n in the list

 if(temp->data!=n)
{printf(“node does not exist in list\n”);

 exit(1);
}

 else
{ p->left=temp->left;

 temp->left=p;
 p->right=temp;

 if(p->left!=NULL) //check if the node is to be added in the end
 (p->left)->right=p;
}

 }
 return(list);
}

// deleting the node from a doubly linked list

node *delet(int n,node *list)
{ node *temp=list;
 while(temp->data!=n && temp->left!=NULL)
 temp=temp->left; //find location oh n in the list
 if(temp->data!=n)
 {printf(“node does not exist in list\n”);
 exit(1);
 }
 else
 { //case 1:deletion of starting node

C & Data Structures by Practice430

 if(temp->right==NULL)//check if it is the staring node
 {list=temp->left;
 list->right=NULL;
 free(temp);
 }
//case 2:node is general node with left and right nodes
 else
 {(temp->right)->left=temp->left;
 if(temp->left!=NULL) //check if node is last node

 (temp->left)->right=temp->right;
 free(temp);
 }

 }
 return(list);
}

7 . Write in detail about the following
a) Weakly Connected Graph
b) Strongly Connected graph

We can write a graph G, a collection of Edges (E) and Vertices (V) as G = (V, E)

V (G) = {A, B, C, D, E, F}
E(G) = { (C,A), (A,B), (B,E), (B,D), (C,E), (C,A), (E,A)}

Each edge is specified by two nodes it interconnects. Two nodes are called adjacent nodes if they
are connected by an edge . In Fig 13.5 vertices A and C are adjacent. Also note that edges can be directed
or bidirectional. We have shown directed edges in Fig 13.5. A directed graph is also known as digraph

^

b

^

_

` a

A Graph with 5 vertices 7 edges.

A graph can have an isolated node, node F. Similarly, we have shown a loop at vertex B. A graph can
have more than one edge between vertices. Then we call such graphs as multiple graphs. For example
between C and D, there are 3 directed edges shown.

431JNTU-Question Papers

Degree of a node is number of edges incident on a node. Degree of node E = 3. Further in degree is
number of incoming edges and out degree is number of edges leaving a node. For example in degree of
node E is 3 and out degree of node E is 1.

A weighted graph is a graph whose edges have weights. These weights can be thought as cost
involved in traversing the path along the edge. Fig 13.6 shows a weighted graph

^

NM

_

`

a

b

NR

R

S

O

 A weighted Graph

Adjacent Vertex A vertex V2 is said to be adjacent to vertex V1 if there is an edge connecting these
two vertices. In Fig 13.6 B&C, D&E are adjacent vertices.

A path through a graph is a traversal of consecutive vertices along a sequence of edges The vertices
that begin and end the path are termed the initial vertex and terminal vertex, respectively. The length
of the path is the number of edges that are traversed along the path. A-B-C-D is path.

Directed Graph(digraph) It is a graph in which edges are directed.

Connected Graph is one in which every vertex is connected to another vertex. Further a digraph is
called strongly connected if there is a path from any vertex to any other vertex.

A digraph is strongly connected if it contains a directed path from j to i for every pair of distinct
vertices i and j.

Connectedness

An undirected graph is considered to be connected if a path exists between all pairs of vertices thus
making each of the vertices in a pair reachable from the other. An unconnected graph may be subdivided
into what are termed connected subgraphs or connected components of the graph.

C & Data Structures by Practice432

The connectedness of a simple directed graph becomes more complex because direction must be
considered. For instance, if vertex a is reachable from vertex b, vertex a may not be reachable from
vertex b. For the road map example when the map is considered to be a directed graph, it can not be
considered a connected graph, because while Calgary is reachable from Saskatoon, Saskatoon is not
reachable from Calgary.

Cycle: A graph is said to be cyclic if starting vertex and ending vertex in a path of the graph is the
same. B-C-E-B is a cycle. A cycle is a path in which the initial vertex of the path is also the terminal
vertex of the path. When a simple directed graph does not contain any cycles is termed acyclic.

Directed Graph Cycle

Cycle for undirected Graph: A simple cycle for an undirected graph must contain at least three
different edges and no repeated vertices, with the exception of the initial and terminal vertex.

Directed Graph Cycle

Simple directed graphs can be classified as weakly connected and strongly connected. A weakly
connected graph is where the direction of the graph is ignored and the connectedness is defined as if the
graph was undirected. For example in the figure shown below we can not reach a from c.

~

Ä

Ç

Å

Weakly Connected Directed Graph

A strongly connected graph is one in which for all pairs of vertices, both vertices are reachable from
the other. A strongly connected graph is a directed graph that has a path from each vertex to every
other vertex. In other words formally a strongly connected graph can be defined as a directed graph
D=(V, E) such that for all pairs of vertices u, v “ V, there is a path from u to v and from v to u.

433JNTU-Question Papers

~

Ä

Ç

Å

Strongly Connected Directed Graph

From the figure shown for strongly connected digraphs , we can conclude following theorems
a) for every n, n>=2,there exists a strongly connected digraph that contains exactly n edges.

Strongly connected digraph shown has 6 edges for n=6.
b) for every n vertex strongly connected digraph contains at least n edges where n>=2. In the

figure , 4 vertex strongly connected digraph contains 5 edges.

8(a). Write a ‘C’ program to sort the elements of an array using selection sort technique with a
suitable example.

Selection Sort : Compare 1st element with all other elements in each iteration set lowest as minimum(Min).
At the end of iteration swap min and 1st element. Now continue with 2nd element same procedure. Continue
with this procedure till entire array is exhausted.

EXAMPLE :
Input

OO PQ NM RR NQ
Array :

Initialization set Min = 22

Iteration 1 :
Comparison new Min

OO PQ NM RR NQ (22,34) 22

OO PQ NM RR NQ

(22,10) 10

OO PQ NM RR NQ (10,55) 10

C & Data Structures by Practice434

OO PQ NM RR NQ (10,14) 10

Swap (22,10) NM PQ OO RR NQ

Min value is put into place
Iteration 2 :

Comparison new Min

NM PQ OO RR NQ (34,22) 22

NM PQ OO RR NQ (22,55) 22

NM PQ OO RR NQ (22,14) 14

Swap (34,14) NM NQ OO PQ RR

Iteration 3 : (Min = 22)
Comparison new Min

NM NQ OO PQ RR (22,34) 22

NM NQ OO PQ RR
(22,55) 22

Iteration 4 : (Min = 34)
Comparison new Min

NM NQ OO PQ RR (34,55) 34

435JNTU-Question Papers

Sorted Array = NM NQ OO PQ RR

Length of array = 5

Note: No. of iterations = 4 = (5-1) = (length – 1)
Algorithm :

Selectsort(sort[],len)
for i=0 to i<len-1 do
begin

min=i
for j=i+1 j<len do
begin

if[sort[j] < sort[min]
min=j

end
if(min != i)

swap(sort[min],sort[i])
end

Program:selection.c

//program to demonstrate selection sort
#include<stdio.h>
#include<stdlib.h>
void selectsort(int sort[],int len);

void main()
{int len,i=0;
 int sort[30];
 printf(“\n enter no<0 to stop>”);
 scanf(“%d”,&sort[i]);
 while(sort[i]!=0)

{i++;
 printf(“\n enter no<0 to stop>”);

 scanf(“%d”,&sort[i]);
}
len=i; //length is taken as i and not as i+1 as 0 is also stored in the array

 selectsort(sort,len); //call the function selectsort which will sort the array
 printf(“\n **** Sorted Array **** \n”);

 for(i=0;i<len;i++)

C & Data Structures by Practice436

 printf(“%d\t”,sort[i]);
}
void selectsort(int sort[],int len)
{int i,j,temp,min;
 for(i=0;i<len-1;i++)

{min=i;
 for(j=i+1;j<len;j++)

 {if(sort[j]<sort[min])
min=j;

 }
 if(min!=i)

 {temp=sort[min];
sort[min]=sort[i];
sort[i]=temp;

 }
 }//end of for(i)

}//end of select sort

8(b). What is the worst case and best case time complexities of selection sort?

For the first iteration the number of inner loop iterations is n-1 for the second iteration the no. of
inner loop iterations is n-2 continuing we get total no. of iterations is

(n-1)+(n-2)+(n-3)+………+1 = n(n-1)/2

Therefore, complexity of Selection sort is O(n2). The number of interchanges is always n-1. Hence
selection sort is O((n2) for both best case and the worst case.

437JNTU-Question Papers

1 (a). What is the difference between break and continue statement? Explain with examples.

THE break STATEMENT

The break statement is used to terminate loops or to exit from a switch. It can be used within a for,
while, do-while, or switch statement. The break statement is simply written as break , without any
embedded expressions or statements.

The break statement causes a transfer of control out of the entire switch statement, to the first state-
ment following the switch statement.

EXAMPLE : Use of break in a switch statement:

switch (choice=toupper (getchar()))
{

case ‘R’:
printf(“RED”);
break;

case ‘W’:
printf(“WHITE”);
break;

}

EXAMPLE: Use of break in a for loop

for (;;) // for ever for loop
{ if(count == 5)

{ printf(“\n reached upper limit of 5: breaking the for loop”);
 break;
}
else
{
 printf(“\n Enter value of %d number :”, count);
 scanf(“%d”,&num);
 sum+=num;
 count++;
}

} // end of for
} // end of main

Code No: RR10203 Set No.3

January 2005

C & Data Structures by Practice438

If a break statement is included in a while,do-while or for loop,then control will immediately be
transferred out of the loop when the break statement is encountered. This provides a convenient way to
terminate the loop if an error or other irregular condition is detected.

THE continue STATEMENT

The continue statement is used to bypass the remainder of the current pass through a loop. The loop
does not terminate when a continue statement is encountered. Rather, the remaining loop statements are
skipped and the computation proceeds directly to the next pass through the loop.The continue statement
can be included within a while, a do-while or a for statement. It is written simply as

 continue;

EXAMPLE OF CONTINUE IN DO … WHILE STATEMENT

First, consider a do-while loop.
do
{ scanf (“%f”,&x);

if(x<0)
{ printf(“ERROR-NEGATIVE VALUE FOR X”);

continue;
}

}while(x<=100);

EXAMPLE OF USAGE OF CONTINUE IN IF STATEMENT:
void main()
 { int count=0;
 int sum;

 int avg;
 for (;;) // for ever for loop

 { if((count %2)== 0) // the number is even. % operator gives remainder
 { printf(“\n even number: breaking the for loop:%d “ count);
 continue; //control goes to here
 }
 else
 { count+=10; // means count = count + 10
 printf(“\n odd number : added 10%d”,count);

 }
 } // end of for
 } // end of main

439JNTU-Question Papers

1 (b). What is the purpose of go to statement? How is the associated target statement identified?

goto STATEMENT

The goto statement is used to alter the normal sequence of program execution by transferring
control to some other part of the program. In its general form, the goto statement is written as

goto label;

where label is an identifier that is used to label the target statement to which control will be transferred.
Control may be transferred to any other statement within the program. The target statement must be
labeled, and the label must be followed by a colon. Thus, the target statement will appear as

label: statement

Each labeled statement within the program must have a unique label; i.e., no two statements can have
the same label.

1(c). Write a C program to evaluate the power series
E^x=1+x+(x*x)+(x*x*x)+…..x^n, 0<x<1

//sumseries.c
/*Program to evaluate the power series*/
#include<stdio.h>
#include<math.h>
#define n 2
void main()
{ float x,sum=0;
 int i;

 /* reading the value of x */
 printf(“enter x value:\n”);
 scanf(“%f”,&x);
 /* computing the value of the series */
 for(i=0;i<n;i++)
 {

 sum=sum+pow(x,i);
 /* pow is the function available in math.h */
 }
 /* displaying the value of sum of the series */
 printf(“sum of the series is %f”,sum);
 getch();
}

C & Data Structures by Practice440

2(a). In what way array is different from ordinary variables.

Arrays are defined in much the same manner as ordinary variables , except that each array name
must be accompanied by a size specification(i.e., the number of elements). An array is a group of related
data items of same data type that share a common name and are stored in contiguous memory locations.

For example:
int a[10];————————— array
int a; ———————————— variable

2(b). What conditions must be satisfied by the entire elements of any given array?
Ans:

1) All the data items of an array share a common name .
Eg:

salary[10]—————— array name is salary
2) All the elements should be same data type.

Eg:
int a[20]; —————— contains all its elements as integers only.

2(c). What are subscripts? How are they written? What restrictions apply to the values that
can be assigned to subscripts?

Each array element (i.e., each individual data item) is referred to by specifying the array name fol-
lowed by one or more subscripts, with is subscript enclosed in square brackets.

For example consider the following example
 char text[] = “New Delhi”; // The string contains 9 characters . It will be stored
 in an array as shown below. Note that we have left blank for size of the array.

 We could also declare specifying the size , but size to be correctly specified ,
 taking care of null character as char text[9] = “New Delhi”

name of the array : text : N e w D e l h i \0
Subscript value : 0 1 2 3 4 5 6 7 8 9
text[0] contains character N
text[9] contains null character (\0)

Each subscript must be expressed as a non negative integer. The value of each subscript can be
expressed as an integer constant, an integer variable or a more complex integer expression .The number
of subscripts determine the dimensionality of the array.

441JNTU-Question Papers

2(d). What advantage is there in defining an array size in terms of symbolic constant rather
than fixed integer quantity?

Symbolic constants are defined in C language as shown below
#define MAX 20

It is convenient and also advantageous to define an array size in terms of symbolic constant rather
than a fixed integer quantity.

int array1{MAX];

This makes easier to modify a program that utilizes an array, since all references to the maximum
array size (Eg., with in for loops as well as in array definitions) can be altered simply by changing the
value of the symbolic constant.

2(e). Write a program to find the largest element in an array.

// maxarray.c Program to find maximum in an array using pointers
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
// Function prototypes
int FindMax(int *a , int n);
void SortArray(int *a , int n);

void main()
 { int i, n, max; // n= no of values in an array
 int *x; // x is a pointer to an array

 printf(“how many elements in your array?<n>\n”);
 scanf(“%d”,&n);

 // allocate dynamic memory space using malloc()
 x=(int*)malloc(n*sizeof(int));
 // read in the array
 for (i=0;i<n;i++)
 { printf(“\n value for %d element=”,i+1);

 scanf(“%d”,x+i); // scanf needs address. we have
 } // given address when we write x+i
 printf(“\n The entered array is....\n”);
 for (i=0;i<n;i++)
 printf(“%d “,*(x+i)); // same as writing x[i]

C & Data Structures by Practice442

 // call Findmax function
 max=FindMax(x,n);//x is a pointer to array
 printf(“\n maximum value of given array = %d “,max);
 }//end of main

// Fn definitions
int FindMax(int *x, int n)
{ int max,i;

 max=*x; // *x is the value of 1 element
 for(i=1;i<n;i++)
 { if (max<*(x+i))

 max=*(x+i);
 }
 return max;
 } // end of FindMax

3(a). What is the use of struct keyword? Explain the use of dot operator? Give an example
for each.

Ans:
“struct” is a required keyword for declaring the structures. C supports a constructed data type

known as structure, which is a method of packing data of different types. A structure is a convenient tool
for handling a group of logically related data items.

In general terms the composition of a structure may be defined as:
struct tag

{
member1;
member2;
…………
membern;

};
Example:

struct account
{

int acct_no;
char acct_type;
char name[80];
float balance;

443JNTU-Question Papers

};

 dot operator(.) :

The members of a structure are usually processed individually, as separate entities, Therefore, we
must be able to access the individual structure members. A structure member can be accessed by writing

variable.member
where variable refers to the name of a structure-type variable, and member refers to the name of a
member within structure. The period(.) that separates the variable name from the member name . This
period is an operator; it is a member of the highest precedence group, and its associatively is left to right.
From the above example, customer is a structure variable of type account. If we wanted to access the
customer’s account number, we would write

customer.acct_no

3(b). Write a C program to accept records of the different states using array of structures. The
structure should contain cha state, population, literacy rate, and income. Display the state
whose literacy rate is highest and whose income is highest.

 //literat.c
 #include<stdio.h>

#include<conio.h>
struct state
{
 char name[20]; /* structure to represent each state */
 int population;
 int literacy_rate;
 int income;
};
void main()
{
 struct state a[25]; /* array of type struct state */

 /* i.e each element of the array is a structure of type state */
 int n,i;
 int highlit_rate,highincome;
 clrscr();

 printf(“enter number of states\n”);
 scanf(“%d”,&n);
 for(i=0;i<n;i++)
 {

 /* reading details of each state */

C & Data Structures by Practice444

 printf(“enter name,population(in millions),literacy rate and income(in crores) of state
%d:\n”,i+1);

 scanf(“%s”,a[i].name);
 scanf(“%d”,&a[i].population);
 scanf(“%d”,&a[i].literacy_rate);
 scanf(“%d”,&a[i].income);
 }

/* code to compute the state with highest percentage of literacy */
 highlit_rate=0;
 for(i=1;i<n;i++)
 {
 if(a[i].literacy_rate > a[highlit_rate].literacy_rate)
 highlit_rate=i;
 }
 printf(“the state with highest percent of literacy is %s\n”,a[highlit_rate].name);

 /* code to compute the state with highest income */
 highincome=0;
 for(i=1;i<n;i++)
 {
 if(a[i].income > a[highincome].income)
 highincome=i;
 }
 printf(“the state with highest income is %s\n”,a[highincome].name);
 getch();
}

4(a). How to use pointers as arguments in a function? Explain through an example.

Ans:
We can pass the address of a variable as an argument to a function. When we pass addresses to a

function, the dummy parameters receiving these pointers which are pointers , should be pointers. The
process of calling a function using pointers to pass the addresses of variables is known as call by refer-
ence.. Function once receives a data item by reference , it acts on data item and the changes made to the
data item also reflects on the calling function.

Consider the following code:
void change(int * val); // function prototypei

 void main()
 {

int x;

445JNTU-Question Papers

x=20;
change(&x);
printf(“%d\n”,x);

 }
void change(int * p)
 { int *p;
 *p= *p + 10;
 }

When the function change() is called, the address of the variable x i.e. & x , not its value i.e. x
, is passed into the function change(). Inside change(), the variable p is declared as a pointer and
therefore p is the address of the variable x. The statement

*p=*p + 10;
means ‘add 10 to the value stored at the address p’. Since p represents the address of x, the value of x
is changed from 20 to 30. Therefore, the output of the program will be 30, not 20.

Thus, call by reference provides a mechanism by which the function can change the stored values
in the calling function.

4(b). Write a C function using pointers to exchange the values in two locations in the memory.

The function for exchanging the values in two locations in the memory is as follows:
//ptrswap.c
#include <stdio.h>
#include <stdlib.h>
// declaration of function prototypes
void Swap(int a , int b); // call by value
void PtrSwap (int *a , int * b); // Call by Ref. a & b are pointers by def.

void main()
{ int x = 5;
 int y=10;
 // call by value
 Swap(x,y);
 printf(“\nafter call by value : x= %d : y = %d “ , x,y);
 // call by reference. Note that we have to send pointers i.e. addresses
 //of x & y . Hence we will pass &x , and & y.
 PtrSwap(&x, &y);
 printf(“\nafter call by ref : x= %d : y = %d “ , x,y);
}//end of main
// Function definitions
void Swap (int a, int b)

C & Data Structures by Practice446

{ int temp ; // two local variables
 temp=a;
 a=b;
 b=temp;
 printf(“\ninside Swap : a= %d : b = %d “ , a,b);
}
void PtrSwap (int *a, int *b)
 { // a & b are pointers . Hence we need a pointer called temp
 int *temp ;
 *temp=*a;
 *a =*b;
 *b= *temp;
 printf(“\ninside Swap : a= %d : b = %d “ , a,b);
}
/*OUTPUT:
inside Swap : a= 10 : b = 5
after call by value : x= 5 : y = 10*/

5 (a). Write in detail about the following:
a) Recursion
b) Applications of Stacks and Queues

Ans:

a) Recursion
Recursion is a process by which a function calls itself repeatedly, until some specified condition has

been satisfied. The process is used for repetitive computations in which action is stated in terms of a
previous result. Many iterative problems can be written in this form:

In order to solve a problem recursively, two conditions must be satisfied. First the problem must be
written in recursive form, and second, the problem statement must include stopping statement.

Eg: The following is the factorial of a number program:

#include<stdio.h>
long int factorial(int n);
main()
{

int n;
long int factorial(int n);
printf(“ n = “);

447JNTU-Question Papers

scanf(“ %d” , &n);
printf(“ n! = %ld \n” , factorial(n));

}

long int factorial(int n)
{

if (n = =1)
return (1);

else
return(n*factorial(n-1));

}

in the function module , it can be observed that finding factorial depends on the factorial of previous
result i.e. factorial of (n-1). We are aware that 1! Is equal to 0. This is infact termination condition for a
recursive call.

If a recursive function contains local variables, a different set of local variables will be created
during each call. The names of the local variables will be the same as declared within the function.
However variables will represent a different set of values each time the function is executed. Each set of
variables will be stored in the stack, so that they will be available as and when recursive algorithm calls
the previous values. The stack data structure is used for the recursive call mechanism.

b) Applications of stacks and queues

A queue is very similar to the way we queue up for any purpose. A Queue is a linear, sequential list
of items that are accessed in the order First In First Out (FIFO). That is the first item inserted in a queue
is also the first item to be accessed, the second item inserted will be the second item to be accessed and so
on. We cannot store/ access the items in a queue arbitrarily or in any random fashion.

When we create a queue the two simple functions that are to be used are: write and read. The write
function adds a new item to the queue, whereas the read function reads one item from the queue.

A queue can be used to store a list of interrupts in the operating system, which would get processed
in the order in which they were generated. A queue can also be used to represent the records in a database
in memory.

A Stack is exactly opposite to the queue. Items in the queue exit in the same way they had entered the
queue. Therefore queue is called as a FIFO structure. A stack is called as Last In First Out (LIFO)
structure, because the item that entered the stack last is the first item to get out. Similarly first item is the
last item to go out from the stack.

Stacks are extensively used in computer applications. Their most notable use is in system software
(such as compilers, operating systems etc).

Stack uses the following two functions: Push and Pop. To write a value to the stack we have to use

C & Data Structures by Practice448

the push operation, whereas to read a value from the stack we have to use the pop operation. The pop
operation is destructive. That is, once an item is popped from the stack the value will no longer retain in
the stack.

6. What is a single linked list? Explain various operations on single linked list with algorithms.
Ans:

We know that a list refers to a set of items organized sequentially. An array is an example of a
list. A completely different way to represent a list is to make each item in the list part of a structure that
also contains a “link” to the structure containing the next item, as shown in the figure below.

áíÉã

píêìÅíì êÉ=N píêìÅíì êÉ=O píêìÅíì êÉ=P

áíÉã áíÉã kbuq

This type of list is called a linked list because it is a list whose order is given by links from one item
to the next. Each structure of the list is called a node and consists of two fields, one containing the item
and other containing the address of the next item (a pointer to the next item) in the list. A linked list is
therefore a collection of structures ordered not by their physical placement in memory (like a carry) but
by logical links that are stored as part of the data in the structure itself. The link is in the form of a pointer
to another structure of the same type. Such a structure is represented as follows:

struct node
{

int item;
struct node *next;

};
The first member is an integer item and the second a pointer to the next node in the list as shown

below. The item referred here can be any complex data type.

áíÉã kbuq

Such structures which contain a member field that point to the same structure type is called self
referential structures. A node may be represented in general form as follows:

struct tag-name

{

type member1;

typemember2;

………

………

struct tag-name *next;

};

449JNTU-Question Papers

The structure may contain more than one item with different data types. And in these, one of the
items must be a pointer of the type tag-name.

BASIC LIST OPERATIONS:
We can treat a linked list as an abstract data type and perform the following basic operations:

1. Creating a list
2. Traversing the list
3. Counting the items in the list
4. Printing the list (or sublist)
5. Looking up an item for editing or printing
6. Inserting an item
7. Deleting an item
8. Concatenating two lists

INSERTING AN ITEM:

Inserting a new item, say X, into the list has three situations:
1. Insertion at the front of the list.
2. Insertion in the middle of the list.
3. Insertion at the end of the list.

The process of insertion precedes a search for the place of insertion. The search involves in locat-
ing a node after which the new item is to be inserted. A general algorithm for insertion is as follows:

Begin
if the list is empty or

the new node comes before the head node then,
insert the new node as the head node,

else
If the new node comes after the last node, then,
 Inset the new node as the end node,

 else
Insert the new node in the body of the list.

End
Algorithm for placing the new item at the beginning of a linked list:

1. Obtain space for new node.
2. Assign data to the item field of new node.
3. Set the next field of the new node to point to the start of the list.
4. Change the head pointer to point to the new node.

C & Data Structures by Practice450

Algorithm for placing the new node ’X’ between two existing nodes: ‘N1’ and ‘N2’:

1. Set space for new node ‘X’.
2. Assign value to the item field of ‘X’.
3. Set the next field of ‘X’ to point to node ’N2’.
4. Set next field of ‘N1’ to point to ‘X’.

Algorithm for placing the new item at the end of a linked list:

The algorithm is similar to the one for inserting in the middle except the next field of new node is set
to ‘NULL’.

1. Set space for new node ‘X’.
2. Assign value to the item field of ‘X’.
3. Set the next field of ‘X’ to point to NULL.
4. Set next field of ‘N1’ to point to ‘X’.

Algorithm for deleting an element : we will delete node from linked list given a position.

éêÉî Åìê

N

OTKU

åÉñí

Linked List showing prev,cur,cur->next nodes

04. Locate the position to be deleted by traversing the List. Traversal can be based on finding
position or finding a value of a node to be deleted. Cur is the node to be deleted.

05. Point prev → next to current → next.
06. Delete current node. We have to check if the node we are deleting is the first node. If yes

we have to readjust the front pointer.

7(a). Write a C program to implement binary tree traversals.

Tree being a non linear data structure , there is no fixed mode or sequence of traversal. There are
three modes for traversal of a tree. All algorithms use recursive call feature. They are

 In Order Traversal
 Traverse Left sub Tree inorder
 Visit the root

451JNTU-Question Papers

 Traverse the Right sub tree inorder

 Pre Order Traversal (Depth First Order – Stack data structure)
 Visit the root
 Traverse left sub Tree preorder.
 Traverse the right sub tree preorder

 Post Order Traversal (Breadth First Traversal – queue data structure)
 Traverse left sub Tree postorder.
 Traverse the right sub tree postorder
 Visit the root

Tree traversals using recursion. recurtraves.c

/* binary tree operations and tree traversals */
// recurtraves.c
#include<stdio.h> //preprocessor
#include<stdlib.h>//preprocessor
struct Tree//structure definition
{ int data;
 struct Tree *lptr;
 struct Tree *rptr;
};
typedef struct Tree node;
//function declarations
node *createtree(node *root);
node *insert(int n,node *root);
void preorder(node *root);
void inorder(node *root);
void postorder(node *root);

void main()//main function
{

node *root=NULL;
int c=0;
while(1)
{

printf(“\n\n\t\tMENU”);
printf(“\n\t1: CREATE\n\t2: POSTORDER”);
printf(“\n\t3: INORDER\n\t4: PREORDER\n\t5: EXIT”);

C & Data Structures by Practice452

printf(“\n\n\tEnter your choice:”);
scanf(“%d”,&c);
switch(c)
{

case 1:root=createtree(root);
break;

case 2: postorder(root);
break;

case 3: inorder(root);
break;

case 4: preorder(root);
break;

case 5: exit(0);
break;

 default: printf(“\nEnter values between 1 and 5 only”);

}//end switch
}//end while

}//end main
void preorder(node *root)//preorder function
{

if(root==NULL)
{ printf(“\n\tEMPTY TREE”);
 exit(1);
}//end if
printf(“%5d”,root->data);
if(root->lptr!=NULL)

preorder(root->lptr);
if(root->rptr!=NULL)

preorder(root->rptr);
}//end preorder
void inorder(node *root)//inorder function
{

if(root==NULL)
{ printf(“\n\tEMPTY TREE”);
 exit(1);
}//end if
if(root->lptr!=NULL)

inorder(root->lptr);

453JNTU-Question Papers

printf(“%5d”,root->data);
if(root->rptr!=NULL)

inorder(root->rptr);
}//end inorder
void postorder(node *root)
{

if(root==NULL)
{ printf(“\n\tEMPTY TREE”);

exit(1);
}//end if
if(root->lptr!=NULL)

postorder(root->lptr);
if(root->rptr!=NULL)

postorder(root->rptr);
printf(“%5d”,root->data);

}//end postorder
node *createtree(node *root)
 { int n;

do{ printf(“\nEnter number<0 to stop>:”);
 scanf(“%d”,&n);

 if(n!=0)
root= insert(n,root);

 }while(n!=0);
 return(root);
 }
node *insert(int n,node *root)
{
 node *temp1=NULL;
 node *temp2=NULL;
 node *p=NULL;

 p=(node *)malloc (sizeof(node));//dynamic allocation of memory foe each element
 p->data=n; //initialize contents of the structure
 p->lptr=NULL;
 p->rptr=NULL;

 //A new node has been created now our task is to insert this node
 //in the appropriate place.If this is the first node to be created
 //then this is the root of the tree.

C & Data Structures by Practice454

 if(root==NULL)
 root=p;

 else
 // We will use temp1 for traversing the tree.
 // Temp2 will be traversing parent
 // p is the new node we have created.
{ temp1=root;

 while(temp1!=NULL)
 { temp2=temp1; // store it as parent
 // Traverse through left or right sub tree
 if(p->data < temp1->data)

 temp1 = temp1->lptr; // left subtree
 else

 if(p->data > temp1->data)
 temp1 = temp1->rptr; // right sub tree

 else
 {

 printf(“\n\tDUPLICATE VALUE”);
 free(p);
 break;

 }//end else
 } //end of while
 // we have trvered to the enode of tree
 // anode ready for insetion
 if(temp1 == NULL)
 { // attach either as left son or right son of parent temp2

 if(p->data<temp2->data)
 temp2->lptr=p; // attach as left son

 else
 temp2->rptr=p; // attach as right son

 }
}//end of else

 return(root);
}

8. Explain the algorithm for selection sort and give a suitable example.

Selection Sort : Compare 1st element with all other elements in each iteration set lowest as minimum(Min).
At the end of iteration swap min and 1st element. Now continue with 2nd element same procedure. Continue
with this procedure till entire array is exhausted.

455JNTU-Question Papers

EXAMPLE :

Input Array : OO PQ NM RR NQ Array :

Initialization set Min = 22

Iteration 1 :

Comparison new Min

OO PQ NM RR NQ (22,34) 22

OO PQ NM RR NQ (22,10) 10

OO PQ NM RR NQ (10,55) 10

OO PQ NM RR NQ (10,14) 10

Swap (22,10) NM PQ OO RR NQ

Min value is put into place
Iteration 2 :

Comparison new Min

NM PQ OO RR NQ (34,22) 22

NM PQ OO RR NQ (22,55) 22

NM PQ OO RR NQ (22,14) 14

Swap (34,14) NM NQ OO PQ RR

C & Data Structures by Practice456

Iteration 3 : (Min = 22)
Comparison new Min

NM NQ OO PQ RR (22,34) 22

NM NQ OO PQ RR (22,55) 22

Iteration 4 : (Min = 34)
Comparison new Min

NM NQ OO PQ RR (34,55) 34

Sorted Array = NM NQ OO PQ RR

Length of array = 5
Note: No. of iterations = 4 = (5-1) = (length – 1)

Algorithm :
Selectsort(sort[],len)
for i=0 to i<len-1 do
begin

min=i
for j=i+1 j<len do
begin

if[sort[j] < sort[min]
min=j

end
if(min != i)

swap(sort[min],sort[i])
end

Program:selection.c
//program to demonstrate selection sort
#include<stdio.h>
#include<stdlib.h>
void selectsort(int sort[],int len);

void main()
{int len,i=0;

457JNTU-Question Papers

 int sort[30];
 printf(“\n enter no<0 to stop>”);
 scanf(“%d”,&sort[i]);
 while(sort[i]!=0)

{i++;
 printf(“\n enter no<0 to stop>”);

 scanf(“%d”,&sort[i]);
}
len=i; //length is taken as i and not as i+1 as 0 is also stored in the array

 selectsort(sort,len); //call the function selectsort which will sort the array
 printf(“\n **** Sorted Array **** \n”);

 for(i=0;i<len;i++)
 printf(“%d\t”,sort[i]);

}
void selectsort(int sort[],int len)
{int i,j,temp,min;
 for(i=0;i<len-1;i++)

{min=i;
 for(j=i+1;j<len;j++)

 {if(sort[j]<sort[min])
min=j;

 }
 if(min!=i)

 {temp=sort[min];
sort[min]=sort[i];
sort[i]=temp;

 }
 }//end of for(i)

}//end of select sort

For the first iteration the number of inner loop iterations is n-1 for the second iteration the no. of
inner loop iterations is n-2 continuing we get total no. of iterations is

(n-1)+(n-2)+(n-3)+………+1 = n(n-1)/2

Therefore, complexity of Selection sort is O(n2). The number of interchanges is always n-1. Hence
selection sort is O((n2) for both best case and the worst case.

C & Data Structures by Practice458

1(a). Write the various steps involved in executing a C program and illustrate it with a
help of flowchart.

Executing a program written in C involves a series of steps. These are:
1. Creating the program.
2. Compiling the program.
3. Linking the program with functions that are needed from the C library.
4. Executing the program.

The following figure illustrates the process of creating, compiling and executing a C program.
póëíÉã =oÉ~Çó

båíÉê=mêçÖê~ãmêçÖê~ã =`çÇÉ

`=`çãéáäÉ ê
bÇ áí=pçìêÅÉ=mêçÖê~ã

`çãéáäÉ=pçìêÅÉ=mêçÖê~ã

iáåâ=ï áíÜ =póëíÉã =i áÄ ê~ êó

bñÉÅìíáîÉ =lÄàÉÅí=` çÇÉ
içÖ áÅ=É êêçê

bñÉÅì í~Ä äÉ =çÄàÉÅí=ÅçÇÉ

póåí~ñ
bêêç êë

\

vÉë

póëíÉã =i áÄ ê~ êó

fåéì í=a ~í~

içÖ áÅ
~åÇ=

bêêç êë
\

`çêêÉÅí=lìíéìí

píçé

Code No: RR10203 Set No.1

Apr/May 2006

459JNTU-Question Papers

Creating the program:

Once we load the Operating system into the memory, the computer is ready to receive the program.
The program must be entered into a file. Examples of valid filenames are hello.c, program1.c, etc. When
the editing is over, the file is saved on the disk. The program that is entered into the file is known as the
Source program, since it represents the original form of the program.

Compiling and linking:
When the compilation command for a file is given (varies for different versions) the source pro-

gram instructions are translated into a form that is suitable for execution by the computer. The transla-
tion is done after examining each instruction for its correctness. If everything is alright, the compilation
proceeds silently and the translated program is stored on another file with a different file name having .o
or .obj extension called Object Code.

Linking is the process of putting together other program files and functions that are required by the
program. If mistakes in the syntax and semantics of the language are discovered, they are listed out and
the compilation process ends right there. The errors should be corrected in the source program with the
help of the editor and the compilation is done again.

The compiled and linked program is called the Executable object code.

Executing the program:
Execution is a simple task. When the command for the execution is given, it will load the executable

object code into the computer memory and execute the instructions. During execution the program may
request for some data to be entered through the keyboard. If the program doesn’t produce correct
results, it means that there is a logic or data error in the program. Then it would be necessary to correct
the source program or the data. In case the source program is modified, the entire process of compiling,
linking and executing the program should be repeated.

Creation compilation and running your program

Use any text editor like notepad, vi editor etc and enter your code and save it as ball1.c.

Compile it using #gcc ball.c Output using # a.out for Linux based system

Run —— Compile —— Execute for Turbo C

Compile and Run your program. Now we are ready for dabbling our foot ball using arrays!

Programming and executing in Linux environment:
1. Switch on the computer.
2. Select the Red hat Linux environment.

3. Right click on the desk top. Select ‘New Terminal’.
4. After getting the $ symbol, type ‘vi filename.c’ and press Enter.

5. Press Esc+I to enter into Insert mode and then type your program there.

The other modes are Append and Command modes.

C & Data Structures by Practice460

6. After completion of entering program, press (Esc + Shift + :).

This is to save your program in the editor.

7. Then the cursor moves to the end of the page.

Type ‘wq’ and press Enter.

(wq=write and quit)

8. On $ prompt type, cc filename.c and press Enter.

9. If there are any errors, go back to your program and correct them.

Save and Compile the program again after corrections.

10. If there are no errors, run the program by typing

./a.out and press Enter.

11. To come out of the terminal, at the dollar prompt, type ‘exit’ and press Enter.

1(b). Candidates have to score 90 or above in the IQ test to be considered eligible for taking
further tests. All candidates who do not clear the IQ test are sent reject letters and others
are sent call letters for further tests. Represent the logic for automating this task.

Ans:
From the data given call letters should be sent only to the students who scored 90 or above in the IQ

test and others are sent reject letters.

Algorithm:
Step 1: Start.
Step 2: Read the name of the student.
Step 3: Read the value of marks scored.
Step 4: Continue the steps 2,3 until all students’ marks are entered.
Step 5: Print the name of the student and send him the call letter if he scored 90 or above otherwise

send them reject letters.
Step 6: Repeat the above step until all students are verified.
Step 7: Stop.

Program:
#include<stdio.h>
struct student
{
 char name[10];
 int marks;
};
main()
{

461JNTU-Question Papers

 struct student stud[20];
 int i,n;
 printf(“Enter the number of students\n”);
 scanf(“%d”,&n);
 for(i=0;i<n;i++)
 {
 printf(“Enter the name of the student and his corresponding marks\n”);
 scanf(“%s %d”,&stud[i].name,&stud[i].marks);
 }
 for(i=0;i<n;i++)
 {
 if(stud[i].marks>=90)
 printf(“%s is selected \n”,stud[i].name);
 else
 printf(“%s is not selected \n”,stud[i].name);
 }
}

2. The annual examination is conducted for 50 students for three subjects. Write a
program to read the data and determine the following
(a) Total marks obtained by each student
(b) The highest marks in each subject and roll number of the student who secured it.
(c) The student who obtained the highest total marks.

 //stdmarks.c
#include<stdio.h>
struct student
{ int num,subject1,subject2,subject3;

int total;
} st[20];
int max(int m,int n); // function prototype

void main()
{ int i,j,n;

printf(“enter the number of students\n”);
scanf(“%d”,&n);
for(i=0;i<n;i++)
{ printf(“enter the number\n”);

scanf(“%d”,&st[i].num);
printf(“enter the marks of the three subjects\n”);
scanf(“%d%d%d”,&st[i].subject1,&st[i].subject2,&st[i].subject3);

C & Data Structures by Practice462

}
for(i=0;i<n;i++)
{ st[i].total=st[i].subject1+st[i].subject2+st[i].subject3;

printf(“the marks secured by %d are %d\n”,st[i].num,st[i].total);
}
j=max(1,n);

printf(“maximum marks obtained in subject1 are %d by roll no %d\n”,st[j].subject1,st[j].num);
j=max(2,n);
printf(“maximum marks obtained in subject2 are %d by roll
no%d\n”,st[j].subject2,st[j].num);
j=max(3,n);
printf(“maximum marks obtained in subject3 are %d by roll
no%d\n”,st[j].subject3,st[j].num);
j=max(0,n);
printf(“maximum total marks obtained are %d by roll no%d\n”,st[j].total,st[j].num);

}
//function definitions
int max(int m,int n)
{ int t=-1,i,j;

for(i=0;i<n;i++)
{ switch(m)

{ case 1:
if(st[i].subject1>t)
{t=st[i].subject1; j=i;
}

 break;
 case 2:

if(st[i].subject2>t)
{t=st[i].subject2;j=i;
}

 break;
 case 3:

if(st[i].subject3>t)
{t=st[i].subject3;j=i;
}

 break;
default:

if(st[i].total>t)
{ t=st[i].total;
 j=i;

463JNTU-Question Papers

}
}//end of switch

}// end of max
return j;

}

3(a). How are structure elements accessed using pointer? Which operator is used? Give
an example.

(b). Write a program to use structure within union. Display the contents of structure
elements.

Ans:
 (a) Structure is a collection of data items of different data types. A structure is a convenient tool

for handling a group of logically related data items. They help us to organize complex data
in a more meaningful way. The general format of a structure definition is as follows

 struct tag_name
 {
 data_type member1;
 data_type member2;

 };

Pointers and structures:

We know that the name of an array stands for the address of its zeroth element. The same thing is true
of the names of arrays of structure variables. Suppose ‘product’ is an array variable of struct type. The
name product represents the address of its zeroth element. Consider the following declaration

 struct inventory
 {

 char name[30];
 int number;

 float price;
 } product[2].*ptr;

This statement declares product as n array of two elements, each of the type struct inventory and ptr
as a pointer to data objects of the type struct inventory.

The assignment ptr = product; would assign the address of the zeroth element of product to ptr.
That is, the pointer ptr will now point to product[0]. Its members can be accessed using the following
notation.

C & Data Structures by Practice464

ptr->name
ptr->number
ptr->price

The symbol -> is called the arrow operator and is made up of a minus sign and a greater than sign.
Note that ptr-> is simply another way of writing product [0]. When ptr is incremented by one, it is made
to point to the next record, i.e., product[1].

 We could also use notation (*ptr).number to access the member number.

EXAMPLE:
//structptr.c
#include<stdio.h>
#include<stdlib.h>
// struct declaration
struct date
{
 int dd;
 int mm;
 int yy;
};
struct Account
{
 int accNo;
 char accType;
 char name[20];
 float bal;
 struct date pdate;
};
typedef struct Account acct;
acct cust,*ptr; // ptr is a pointer to structure
// fn decl
void ReadInput(acct *cust); // cust is a pointer to structure
void Update(acct *cust);
void WriteOutput(acct *cust);

void main()
{
 acct cust; // create an instance of structure acct
 // read data into structure by passing a pointer to structure
 //to ReadInput().

465JNTU-Question Papers

 ReadInput(&cust); //&cust would imply address of cust i.e pointer
 // Update status of account
 Update(&cust); // we are again passing pointer
 //write output
 WriteOutput(&cust);
 }// end of main
// fn defenitions
void ReadInput(acct *cust)
{ float bal;
 printf(“\n enter data for account holder”);
 printf(“\nEnter <name>:”);scanf(“%s”,cust->name);
 printf(“\nEnter <accNo>:”);scanf(“%d”,&cust->accNo);
 printf(“\nEnter <accType>:”);cust->accType=getche();
 printf(“\nEnter <balance>:”);scanf(“%f”,&bal);cust->bal=bal;
 printf(“\nEnter pdate<dd mm yy>:”);
 scanf(“%d%d%d”,&cust->pdate.dd,&cust->pdate.mm,&cust->pdate.yy);
 printf(“\n—————————————————”);

}
 void WriteOutput(acct *cust)
{ printf(“\n—————————————————”);
 printf(“\nname:”);printf(“%s”,cust->name);
 printf(“\naccNo:”);printf(“%d”,cust->accNo);
 printf(“\naccType:”);printf(“%c”,cust->accType);
 printf(“\nbalance:”);printf(“%g”,cust->bal);
 printf(“\npdate<ddmmyy>:”);
 printf(“%d-%d-%d”,cust->pdate.dd,cust->pdate.mm,cust->pdate.yy);
}

void Update(acct *cust)
{
 //if the balance is more than 1000.00 set accType as current(c)
 // and add 10% of balance to balance amount as Interst. Else
 //classify the account as inactive(I)
 if(cust->bal>=1000.00)
 {
 cust->bal+=cust->bal*0.1;
 cust->accType=’C’;
 }

C & Data Structures by Practice466

 else
 cust->accType=’I’;

 }

b) A program to use a structure with in a union

/* program to use structure with in union */

//union1.c
#include<stdio.h>
#include<ctype.h>
// union declaration
struct Account
{char name[20];
};
union details
{ int accNo;
 char accType;
 struct Account acc;
};
typedef union details acct;
// fn decl
acct ReadInput(acct cust);
void WriteOutput1(acct cust);
void WriteOutput2(acct cust);
acct Update(acct cust);
acct Update2(acct cust);
void WriteOutput3(acct cust);
void main()
{ acct cust; // create an instance of union acct
 /* read data into union by union to ReadInput()
 that returns union filled with data*/
 cust=ReadInput(cust);
 // after ReadInput cust.accNo is active
 WriteOutput1(cust);
 // Update status of account
 cust=Update(cust);
 WriteOutput2(cust);

467JNTU-Question Papers

 cust=Update2(cust); Update2 modifies the name
 //After Update2() function only cust.acct.name is active.
 WriteOutput3(cust);
 }// end of main
// fn defenitions

acct ReadInput(acct cust)
{ printf(“\n enter data for account holder”);
 printf(“\nEnter <name>:”);scanf(“%s”,cust.acc.name);
 printf(“\nEnter <accNo>:”);scanf(“%d”,&cust.accNo);
 printf(“\n—————————————————”);
 return cust;
}
void WriteOutput1(acct cust)
{ printf(“\noutput after calling ReadInput()”);
 printf(“\n\nNow cust.accNo is active.....”);
 printf(“\naccNo:”);printf(“%d”,cust.accNo);
}
acct Update(acct cust)
{ if(cust.accType==’C’)
 cust.accType=’D’;
 else
 cust.accType=’C’;
 return cust;
}
void WriteOutput2(acct cust)
{ printf(“\n\noutput after calling Update()”);
 printf(“\n\nNow cust.accType is active.....”);
 printf(“\naccType:”);printf(“%c”,cust.accType);
}
acct Update2(acct cust)
{ printf(“\nEnter Ammended <name>:”);
 scanf(“%s”,cust.acc.name);
 return cust;
}
void WriteOutput3(acct cust)
{ printf(“\n\noutput after calling Update2()”);
 printf(“\n\nNow cust.acc.name is active.....”);
 printf(“\nname:”);printf(“%s”,cust.acc.name);

C & Data Structures by Practice468

}

4.(a) Distinguish between the following functions
i. printf and fprintf
ii. eof and ferror

(b) Write a program to copy the contents of one file into another.

(a)
i) printf: It is a predefined (means that it is a function that has already been written and compiled, and
linked together with our program at the time of linking) standard C function for printing output. The
printf causes everything between the starting and the ending quotation marks to be printed out.

E.g. printf(“this is demonstration”);
In the above example the output will be

this is demonstration
The printf can take multiple arguments also including any values of the variables to be output.
The format for printf statement is : printf(format, arg1,arg2..)
Consider the following example

E.g. printf(“%d\n”,number);
The above example the first argument “%d” tells the compiler that the value of the second argument

number should be printed as a decimal integer. The new line character \n causes the next output to appear
on a new line. It prints out the data given to it on to the screen.

Other Control formats available for printf are:

%c Character
%d Decimal integer
%h Short integer
%i Decimal , octal(prefix by 0) , Hexadecimal(prefix by 0x)
%o Octal integer
%u Unsigned decimal integer
%x Hexadecimal
%f Float
%e Float , double precision
%g Float

 %s String followed by null character (\0 will be added automatically)

fprintf:
The function fprintf perform I/O operations that is identical to printf, except of course that they work

on files. The first argument of this function is a file pointer which specifies the file to be used. The
general form of fprintf is

469JNTU-Question Papers

fprintf(fp,”control string”,list);

Where fp is a file pointer associated with a file that has been opened for writing. The control string
contains output specifications for the items in the list. The list may include variables, constants and
strings.

EXAMPLE :
 fprintf(f1,%s %d %f”,name,age,7.5);

 /*a program demonstrating the usage of printf and fprintf */
#include<stdio.h>
main()
{
 FILE *fp;
 char text[30];
 fp = fopen(“text .txt”,”w”);
 printf(“enter text here\n”);
 gets(text);
 fprintf(fp,”%s”,text);
 fclose(fp);
}

ii) EOF:
 It specifies the end of file that is the end of a data in a file is indicated by entering an EOF
character, which is control-Z in reference system. When any function encounters the ending of file it
returns an EOF character.

ferror:
It is possible that an error may occur during I/O operations on a file. They include device overflow,

trying to use unopened file, opening a file with an invalid filename, trying to read beyond the end-of-file
mark, attempting to write a write protected file etc. they may result in abnormal termination of the pro-
gram. To avoid such results ferror help us to detect I/O errors in the files.

The ferror function report the status of the file indicated. It also takes a FILE pointer as its argument
and returns a nonzero integer if an error has been detected upto that point, during processing. It returns
zero otherwise. The statement

if(ferror(fp)!=0)
printf(“an error has occurred\n”);

would print the error message, if the reading is not successful.

/*a program to demonstrate the usage of EOF and ferror() */

#include<stdio.h>

C & Data Structures by Practice470

#include<process.h>
#include<conio.h>

void main()
{
 FILE *f;
 char c;
 f = fopen(“test.c”.”w”);
 if(f == NULL)
 {
 printf(“\n cannot open”);
 exit(0);
 }
 while((c=fgetc(f))!= EOF)
 {
 if(ferror(f))
 {
 printf(“\n can’t read file”);
 fclose(f);
 exit(1);
 }
 printf(“%c”,c);
 getch();
 }
 fclose(f);
}

(b) Write a program to copy a file on to another file

/*Write a program to copy a file from source to destinations*/
//fcopy.c
#include<stdio.h>
#include<stdlib.h>
void main()
{ char c;

char file1[10],file2[10];
FILE *fp1,*fp2;
printf(“Enter a input file name: “);

 scanf(“%s”,file1);
printf(“Enter output file name: “);

471JNTU-Question Papers

 scanf(“%s”,file2);
 fp1 = fopen(file1, “r”);
 if (fp1 == NULL)

{ printf(“Error opening file \n”);
 exit(1);
 }

else
{ fp2=fopen(file2,”w”);

if (fp2 == NULL)
{ printf(“Error opening file\n”);

 exit(1);
}

 else
 while((c=getc(fp1))!=EOF)
 putc(c,fp2);

 printf(“successful copy operation\n”);
 }
} // end of main

5. Write in detail about the following
 a) Circular queue b) Dequeue

(a) Circular queue-array representation
Linear queue suffers from one major drawback . When the first element is serviced , the front is

moved to next element. However , the position vacated is not available for further use. Thus , we may
encounter a situation , wherein program shows that queue is full , while all the whose elements have been
deleted are available but unusable , though empty. The situation is shown in fig 1 As a solution , we
would consider a superior data structure called circular queue . Look at the fig 2.showing an empty
circular queue. Observe that both front and rear are initialized to the same position MAX-1 i.e. position9.
For programmer only positions available are from 0 to 8. W have sacrificed one position , shown as * in
the diagram , in order that we could identify the conditions empty and full for circular queue. Consider
following two statements

cêçå í

êÉ~êa~í~xj^uJN z

aÉ äÉ íÉÇ =Ñêçã =èìÉìÉ

aÉäÉ íÉÇ =Ñêçã =èìÉìÉ F ig 1

C & Data Structures by Practice472

Circular queue is empty if q.rear = = q.front
For checking Full condition , we will increment q.rear and then check
if q.rear= = q.front

In a circular queue , there is no fixed positions for front and rear .
oÉ~êZ Ñêçåí
a~í~xVz

a~í~xUz

a~í~xTz

a~í~xSz

a~í~xRz
a~í~xQz

a~í~xPz

a~í~xOz

a~í~xNz

a~í~xMz

G

Fig. 2 An Empty circular queue capacity max = 12.

Front always points to beginning of the queue but it does not point to first element. It is
always point to one less than first element of the queue.

On Insert operation , rear is incremented by 1.

On delete front pointer is decremented by 1 and front now points to next element in the
queue.

In Fig. 3 , insertion of new element is simple operation as queue is NOT full i.e. rear != front. As we
are dealing with circular queue , there is a need to wrap around rear if it exceeds Max -1 value. For this
activity , we will use %(modulus operator) that give us remainder directly.

Rear = (Rear +1)%(Max)
 Rear = (1+1)%10 = 2. Therefore insert element 45 at rear =2

ÑêçåíZj^uJN=a~í~xV z

a~í~xUz OR

PR

QR

a~í~xNz

áåëÉêíÉÇ =î~äìÉ
åÉï=éçëáíáçå
Ñç ê=êÉ~ê

a~í~xMz

G

Fig. 3 Insertion in a circular queue that is not full

473JNTU-Question Papers

For checking overflow condition, shown in fig. 4 we will first increment q.rear and check if q.rear
= = q.front. If condition is true, it implies that queue is full. Then we will decrement q.rear by one,
which we have incremented prior to checking and return to calling function. For example, we want to
add element 105 to the queue . as a first step, increment q.rear. Now, we find q.rear is equal to q.front.(9).
It means that queue is full Hence we will restore q.rear to original position by decrementing by one. To
check if circular queue is full, we will check if (q.rear = = q.front). Observe that condition is same as
that of checking for empty circular queue.

ÑêçåíZj^u JN=a ~í~ xV z

êÉ~ê=Ç~ í~ xUz OR

NMM

VR

UR

TR SR

RR

PR

QR

a~í~xNz

a~í~xMz

G

Fig. 4 : Insertion in a circular queue that is full

b) Dequeue
The term dequeue originated from Double Ended Queue. Unlike queue, in dequeue, both insertion

and deletion operations can be made at either end of the structure. It can be as shown below.

cêçå í
aÉ äÉ íáçå

aÉ äÉ íáçå
====fåëÉêíáçå

fåëÉêíáçå

cêçå í
oÉ~ê

oÉ~ê

It is clear from the deque structure that it is a general representation of both stack and queue, or in
other words, a deque can be used as a stack as well as a queue.

There are various ways of representing a deque in a computer. One simpler way to represent it is
using a double linked list. Another popular representation is using a circular array.

The algorithms for various operations on queue are given below.

C & Data Structures by Practice474

1. PushFront(item) : To insert ITEM at the front.
2. popfront() : To remove the front ITEM from dequeue
3. pushRear(item) : To insert ITEM at the REAR end of dequeue
4. poprear() : To remove the REAR ITEM from dequeue

These operations are described for a deque based on a circular array of size Length len.

The data structure most suited would be circular queue. The prototype function for pushfront() is
as follows

dequeue * pushfront(dequeue * dq , int item);

 // dq = double ended queue received as argument
 if (front = 1) then

ahead = len // We will isert at end
 else

if(front = len) or (front == 0) then
ahead = 1 // rear is full or front is empty. We will insert at LHS

else
ahead = front-1 // to insert from the RHS

end if
 if (ahead = rear) then

print ”deque is full”
exit

 else
front = ahead // move Front as per insertion side LHS or RHS
dq[FRONT]=ITEM// insert an item

 return dq;
 stop

Algorithm popfront()
To remove an item from the front and display the removed item. The function prototype is shown

below.

int popfront(deque * dq)

 if (front= = 0) then
print “queue is empty”
exit

 else
Item = dq(front)
if (front ==REAR) then

475JNTU-Question Papers

front = 0
rear =0

else
front= (front % len)+1

end if
 end if
 stop

Algorithm for pushing an element from the rear

dequeue * pushfront(dequeue * dq , int item);

 if(front==0) then
front = 1;
rear= 1
dq[front] = item

 else
nextt = (rear % len)+1
if(next != front) then

rear = next
dq[rear] = item

else
print “queue is full”

end if
 end if
 stop

Algorithm to pop an element from the rear

int poprear(deque * dq)

 if(front == 0) then
print “deque is emplty”
exit

 else
if(front == rear) then

item = dq[rear]
front = rear = 0

else
if(rear == 1) then

item = dq[rear]

C & Data Structures by Practice476

rear = len
else

if(rear= len) then
item = dq[rear]
rear = 1

else
item= dq[rear]
rear = rear -1

end if
end if

 end if
 stop

6. Write a C program to implement addition of two polynomials.

Ans:
//addpoly.c
#include<stdio.h>
#include<malloc.h>

struct NODE
{

int p;
int coeff;
struct NODE *next;

};

typedef struct NODE NODE;
NODE* CREATEPOLY(int c[],int ord); /*creates a polynomial*/
void ADD(NODE *A,NODE *B)
{ int y;

while(A||B)
{ y = A->coeff+B->coeff;

if(A->p>B->p)
{ printf(“%dx^%d+”,A->coeff,A->p);

A = A->next;
}
else if(A->p<B->p)
{ printf(“%dx^%d+”,B->coeff,B->p);

B = B->next;

477JNTU-Question Papers

}
else
{ printf(“%dx^%d+”,y,A->p);

A = A->next;
B = B->next;

}
}
printf(“\b”);

}
void main()
{ int *c,*d,x,y;

struct NODE *A,*B,*P,*Q;
int n,i,m;
printf(“enter the degrees of first and second polynomials\n”);
scanf(“%d%d”,&n,&m);
c = (int*)malloc((n+1)*sizeof(int));
d = (int*)malloc((m+1)*sizeof(int));

printf(“enter the coefficients of the first polynomial:\n”);
for(i=0;i<=n;i++)

scanf(“%d”,&c[i]);

printf(“enter the coefficients of the second polynomial\n”);
for(i=0;i<=m;i++)

scanf(“%d”,&d[i]);

A = CREATEPOLY(c,n);
B = CREATEPOLY(d,m);
printf(“\n the addition result is \n”);
ADD(A,B);

}
NODE* CREATEPOLY(int c[],int ord) /*creates a polynomial*/
{ int i;

NODE *H=0,*A;
for(i=0;i<=ord;i++)
{ A = (NODE*)malloc(sizeof(NODE));

A->coeff = c[i];
A->p = i;
A->next = H;

C & Data Structures by Practice478

H=A;
}
return (H);

}

7. Write in detail about the following
(a) AVL tree
(b) Binary search tree

(a) AVL tree:
 Adilson Velski Landis tree is a height balanced binary search tree in which the balance factor
of each node is 0,1,-1. balance factor of each node is defined as the height of left sub tree – the height
of right sub tree.

Basic Operations:
1. Construction
2. Search and traversing as a binary search tree.
3. Insert a new item in the AVL tree in such a way that the height balance property is main-

tained.
4. Delete an item from an AVL tree in such a way that the height balance property is main-

tained.

Rotation of AVL tree:
A rotation rebalances the part of an AVL tree by rearranging the nods by preserving the relation ship,

left<parent<right that must be maintained, for a tree to remain a binary search tree. After a rotation, the
balance factors at the nodes in the rotated sub tree should have balance factors –1,0,1(any of them). The
different types of rotations are

1. Left rotation
2. Right rotation
3. Left right rotation
4. right left rotation

Left rotation:
It is performed when unbalance occurred due to a new element is inserted into the left of left sub tree

of tree T. The rotation steps are

i. Let the root be T and let left is the left child of root. To perform left rotations set the left
pointer of T as a right child of left.

ii. Set the right pointer of left to T.

iii. Now left refers to the T.

479JNTU-Question Papers

Right rotation:
It is performed when unbalance occurred due to a new element is inserted into the right of right sub

tree of tree T. steps include
i. Set the right pointer of T to the left child of the right.

ii. Set the left pointer of right to T.

Left right rotation:
It is performed when unbalance occurred due to a new element is inserted into the right sub tree of

left sub tree of tree T. Let left be the left child of T and grandchild is right child of left. Steps include

i. We set the right pointer of left, to the left child of grandchild.

ii. Next set the left pointer of grand child to the left.

iii. Set the left pointer of T to the right pointer of grand child and right pointer of grand child to
T. Finally T refers to the left.

Right left rotation:
It is performed when unbalance occurred due to insertion at the left sub tree of right child of the pivot

node.

i. Right sub tree(Br) of the left child(B) of the right child(A) of the pivot node(P) becomes the
left sub tree of A.

ii. Right child(A) of the pivot node(p) becomes the right child of B.

iii. Left sub tree(Bl) of the right child (B) of the right child(A) of he pivot node(p) becomes the
right subtree of p.

iv. P becomes the left child of B.

Binary Search Tree : Binary search Tree (BST) is an ordered Binary Tree in that it is an empty tree or
value of root node is greater than all the values in Left Sub Tree(LST) and less than all the values of Right
Sub Tree (RST). Right and Left sub trees are again binary sub trees by themselves.

V

T

Q

P

NO

NP

NR

NT

OM

NU

NV
NQ NU

NTONVR

U

OM

OO

Example of BST Not a BST. Node 17 violates RST rule

C & Data Structures by Practice480

We will be using BST structure to demonstrate features of Binary Trees. The operations possible on
a binary tree are

a) Create a Binary Tree
b) Insert a node in a Binary tree
c) Delete a node in a Binary Tree
d) Search for a node in Binary search Tree
e) Traversals of a Binary Tree

i) In Order traversal
ii) Pre Order Traversal
ii) Post Order Traversal

Creating Binary Tree: Algorithm

Step 1: Do step 2 to 3 till stopped by the user
Step 2 : Obtain a new node and assign value to the node
Step 3 : Insert on to a Binary Search tree
Step 4 : return

Insertion a node in a binary search tree (BST)
 InsertNode (node , value)
 { Check if Tree is empty
 If (empty)
 Enter the node as root
 / / find the proper location for insertion
 Else
 If (value < value of current node)
 { If (left child is present)
 InsertNode(LST , Value);
 else
 allocate new node and make LST pointer point to it
 }
 else if (value > value of current node)
 { If (right child is present)
 InsertNode(RST , Value);
 else
 allocate new node and make RST pointer point to it
 }
 }

 Deleting a node from a binary search tree. There are three distinct cases to be considered when
deleting a node from a BST. They are

481JNTU-Question Papers

a) Node to be deleted is a leaf node. Make its parent to point to NULL and free the node.
For example to delete node 4 . Right pointer of 5 to point to NULL and free (node4).

T

R

P Q

V

Fig. Deleting a leaf node

b) Delete a node with one child only, either left child or right child. For example we will
delete node 9 that has only a right child. The right pointer of node 7 is made to point to node 12.
The new tree after deletion is shown in figure given below.

T

R V

NN

NN

T

R

Fig. Deletion of node with only one child Fig. New tree after deletion

c) Node to be deleted has two children. The replace the value with smallest value in the right
sub tree or largest value of left sub tree. We will replace it smallest value of right sub tree.
Node 9 that has two children, needs to be deleted from figures.

OM

NR

V

NN

Q

S

T

OM

NR

T

Q

NN

T

Fig. A node 9 to be deleted Fig. Replace smallest of right sub tree i.e replace 9 with 6

C & Data Structures by Practice482

OM

NR

T

Q

NN

T

Fig. Adjust the pointer of 11 to point to 7 and free empty node procedure at fig 12.8 b

Searching a binary search tree
 SearchNode(int val , node * root)
 {
 Step 1: set root to pointer P
 Step 2 : Repeat step 3 – 4 till completion
 Step 3 : if val = data of P
 Search is successful
 else
 { if val < data of P
 Set P pointing to LPTR
 Else
 Set P pointing to RPTR
 }
 Step 4 : If (P= = NULL)
 Value does not exist
 Step 5 : Return

8. Discuss in detail about the following searching methods
(a) Sequential search
(b) Fibonacci search

Searching:
Searching is an important and most frequently performed in computer operations. The program

usually searches for a record with an identification number. For example , if you are a bank manager you
would search for a particular transaction involving a customer. Similarly , if you are a students you may
search for your record containing marks. Note that , in real life files are usually very large files , for
example Municipal corporation may hold millions of records. To search your record out of say ten mil-
lion records must be fast. Here comes the need for an efficient algorithm.

483JNTU-Question Papers

There are several types of searches like linear search , binary Search , and hash search etc .
However we would be concentrating on linear and binary search. usally we carryout search using a key.
This key is an identifier for the record holding data. Examples of key are , customer id , student roll
number etc. The output from a search algorithm is normally the position of the record or the contents of
the record.

Linear Search

This is most frequently used search method. We simply traverse the list or array or records and check
if the identification number matches with the id number of our interest.

Algorithm:

Begin:
Found = false

 Count = 0
 Obtain the input array.

 Obtain number of terms , key
 Do

 { If array[count]== key
 Found = true.
 Else

 Count ++
 } while (count <=N) && found==false)
 if false declare the key is not present in the array
 Else declare the position and value of the element
 End

We have done several of linear searches in the areas we have covered . for example all our array
traversal are linear searches.

Analysis of Linear Search.
The critical parameter of linear search is how many comparisons . we have to carry out to get the

result. How many times we have to execute the do … while loop in our algorithm. Obviously the larger
the data set , the larger will be time of execution. It also depends on the position of the record in the file.

For example if there are 10000 records and record of our interest is at 9999 the we have to traverse
9998 records to access 9999 record. Similary if we are lucky and our record is at position 2 , then only
one access and check would suffice. Therefore average number of comparisons C is given by

C = 1+2 +3 +4+ …………+N /N

C = (N * (N + 1)) /2*N

C = (N+1)/2

C & Data Structures by Practice484

Sequential search os efficient for small number of records but very inefficient for large set of
records. In the worst case , the sequential search has complexity of O(N) as N comparisons would be
required.

(c) Fibonacci Search:

The following search algorithm on a sorted array is known as the Fibonacci search because of its
use of Fibonacci numbers. In this algorithm mid value is not simply an average of Beg and End but based
on Fibonacci number. The code is shown below

/*code representing the Fibonacci search*/
for(j=1;fib(j)<n;j++) ;
mid = n-fib(j-2)+1;
fi = fib(j-2);
f2 = fib(j-3);
while(key!=k[mid]) /*k is an array of elements on which the search has to be carried
out*/
 if(mid<0 key>k[mid]) /* key is the element that has to be searched*/
 { if(f1==1) return(-1);
 mid+=f2;
 f1-=f2;
 f2-=f1;
 }
else
 { if (f2==0) return(-1);
 mid -=f2;
 t=f1-f2;
 f1=f2;
 f2=t;
}
return (mid);

 In the above code fib(n) gives the nth fibonacci number. The code for it is
int fib(int n)
{ int x,y;
 if(n<=1) return(n);
 x=fib(n-1);
 y=fib(n-2);
 return(x+y);
}

	Foreword

	Preface

	Contents

	Chapter 1. Around the World of C

	1.1 Welcome to C Language

	1.2 Arrays Implementation

	1.3 Use of Structure to Implement Foot Balls Problem

	1.4 Exploit C Files to Store Data About Foot Balls

	Chapter 2. Programming Basics

	2.1 Introduction

	2.1.1 Flow Charts

	2.2 Algorithm: The Four Important Properties of any Algorithm Must Possess Are

	2.3 Program Development Steps

	2.4 About A, B and C

	2.5 Structure of C Language

	2.6 C Language Basics

	2.7 Data Types

	2.8 Constants

	2.8.1 Declaration and Assignment Values to Variables

	2.9 Expressions

	2.10 Arithmetic Operators

	2.11 Relational and Logical Operators

	2.12 Precedence and Association of Operators

	2.13 Input and Output Statements

	Chapter 3. Control Statements

	3.1 Conditional and Branching Statements

	3.1.1 If Statement
	3.1.2 If – Else Statement:

	3.2 If - Else-If Statement

	3.3 Switch and Case Statements

	3.4 Control Loops

	3.4.1 While Loop
	3.4.2 Do-While Loop
	3.4.3 For Loop
	3.4.4 When to Use for or While or Do-while

	3.5 Break and Continue

	3.5.1 Break.
	3.5.2 Continue Statement

	3.6 Goto Statements

	3.7 Exit function.

	Chapter 4 Functions and Storage Classes

	4.1 Why Use Functions ?

	4.2 Communication Between Functions

	4.3 Call by Value

	4.4 Call by Reference

	4.5 Recursion

	4.6 Storage Classes in C Language

	4.6.1 Memory Organization and Mapping of C Language
	4.6.2 Types of Storage Classes

	4.7 Header Files

	4.8 C Preprocessor

	4.8.1 Macro Expansion
	4.8.2 Macro Definition with Arguments.
	4.8.3 File Inclusion
	4.8.4 Conditional Inclusion
	4.8.5 Conditional Compilation #ifdef and #ifndef Statements
	4.8.6 #undef
	4.8.7 #error Macros

	Chapter 5. Arrays & Strings

	5.1 How Arrays are Stored in the Memory

	5.2 Array Initialization

	5.3 Multi Dimensional Arrays

	5.4 Character Array-String Handling in C Language

	5.5 String. H - Library Function

	Chapter 6 Pointers

	6.1 What, Why and How of Pointers

	6.2 Declaration & Usage

	6.3 Call by Value & Call by Reference

	6.4 Dynamic Memory and Malloc() and Calloc()

	6.5 Pointers & Arrays: Let us Under Stand the Connection Between Pointer & Arrays

	6.6 Pointers & Multi Dimensional Arrays

	6.6.1 Two Dimensional Arrays & Pointers
	6.6.2 Three Dimensional Arrays & Pointers
	6.6.3 Array of Pointers.

	6.7 Pointers to Void

	6.8 Pointer to Pointers

	Chapter 7 Structures and Unions

	7.1 Let us Declare & Define a Structure in C Language for the Above Record in a Physical File

	7.2 Initialization of Values to Structure

	7.3 First Problem Using Structure

	7.4 Input and Output Using Structures

	7.5 Passing of Structure Elements as Arguments to a Function

	7.6 Pass a Structure as an Argument to a Function
	7.7 Pass a Pointer to a Structure as an Argument to a Function.

	7.8 Create a Pointer to a Structure

	7.9 Passing Array of Structures to a Function

	7.10 Sorting an Array of Structures

	7.11 Unions

	Chapter 8 Files

	8.1 Introduction to Files

	8.2 File Types

	8.3 Input-Output (IO)Functions

	8.3.1 Errors while Opening Files
	8.3.2 Checking for End of File
	8.3.3 More Streaming Functions
	8.3.4 Stream Functions for Writing Structures on to File

	8.4 Command Line Arguments

	Chapter 9. Linear Data Structures

	9.1 Introduction to Data Structures

	9.2 Single Linked Lists

	9.3 Linked Lists Functions

	9.4 Reverse List

	9.5 Double Linked Lists

	Chapter 10. Stacks

	10.1 Introduction

	10.2 Stack Operations

	10.3 Array Implementation of Stack Data Structure

	10.4 Stack Implementation Using Linked Lists

	10.5 Applications of Stack

	10.5.1 Infix to Postfix Notation
	10.5.2 Evaluation of Postfix Expression.

	Chapter 11. Queues

	11.1 Introduction to Queues

	11.2 Array Representation of Queue

	11.2.1 Algorithm for Addition of An Element to the Queue
	11.2.2 Algorithm for Deletion of An Element to the Queue

	11.3 Dynamic Representation of Queues Using Linked Lists

	11.4 Circular Queue-Array Representation

	Chapter 12. Non Linear Data Structures-Trees

	12.1 Trees Why - What - How

	12.2 Terminology and Definitions of Tree

	12.3 Binary Trees

	12.4 Binary Search Tree

	12.4.1 Creating Binary Tree
	12.4.2 Insertion A Node in A Binary Search Tree (BST)
	12.4.3 Deleting A Node from A Binary Search Tree.
	12.4.4 Searching A Binary Search Tree

	12.5 Tree Traversals

	12.6 Non Recursive Algorithms for Binary Search Trees

	Chapter 13. Graphs

	13.1 Introduction

	13.2 Graph Representation

	13.2.1 Adjacency Matrix Representation
	13.2.2 Adjacency List Representation

	13.3 Graph Traversals

	13.3.1 DFS Algorithm
	13.3.2 BFS Algorithm

	13.4 Minimal Spanning Trees (MST)

	13.4.1 MST Problem
	13.4.2 Example Spanning Tree Problem
	13.4.3 Kruskals Algorithm for MST
	13.4.4 Prims Algorithm for MST

	Chapter 14. Searching and Sorting

	14.1 Introduction

	14.2 Big Oh-O Notation

	14.3 Efficiency Considerations in Sorting Algorithms

	14.4 Searching

	14.4.1 Linear Search

	14.4.2 Analysis of Linear Search

	14.5 Binary Search

	14.5.1 Binary Search Algorithm

	14.6 Bubble Sort

	14.7 Selection Sort

	14.8 Insertion Sort

	14.9 Quick Sort

	14.10 Heap Sort

	JNTU Question Papers Fully Solved

